Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ". Страница 75
Г. ч. представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы— это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Г. ч. показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими, а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас (см. Геноцид, Сегрегация).
Лит.: Ниль Дж. и Шэлл У. Наследственность человека, пер с англ., М, 1958; Канаев И. И., Близнецы, М. — Л., 1959; Штерн К., Основы генетики человека, пер. с англ., М., 1965; Маккьюсик В., Генетика человека, пер. с англ., М., 1967; Биология человека, пер. с англ., М. 1968: Эфроимсон В. П., Введение в медицинскую генетику, 2 изд., М., 1968: Основы цитогенетики человека, [М., 1969]; Li Ching-chun, Human genetics, N. Y., 1961.
К. Н. Гринберг, А. А. Прокофьева-Бельговская.
Генетико-автоматические процессы
Гене'тико-автомати'ческие проце'ссы, вероятностные процессы, определяющие изменение частоты разных аллелей в популяции. В больших, свободно скрещивающихся популяциях в отсутствие отбора и давления мутаций соотношение аллелей, независимо от их абсолютной исходной частоты, должно сохраняться во всех поколениях. Однако в реальных, ограниченных по численности популяциях частота генов не остаётся постоянной не только под давлением мутаций и отбора, но и в силу случайных отклонений. Детальный анализ Г.-а. п. был проведён советскими генетиками Н. П. Дубининым (1931), Н. П. Дубининым и Д. Д. Ромашовым (1932), английским — Р. Фишером (1931) и американским — С. Райтом (1931). Случайные колебания частоты аллелей популяции связаны с тем, что распределение аллелей между гаметами и комбинирование гамет в зиготе — вероятностные процессы. Г.-а. п. оказывают несистематический эффект, т.к. частота аллелей в разных поколениях может повышаться или понижаться. В малых популяциях или в популяциях, которые распадаются под действием изоляционных механизмов на отдельные подгруппы, может происходить чисто случайная стабилизация аллелей (гомозиготы) или их элиминация; в результате довольно быстро проявляются новые стабилизированные комбинации генов. Наиболее отчётливо Г.-а. п. проявляются при возникновении новых изолированных популяций. Например, в секте меннонитов (Ланкастер, штат Пенсильвания, США), насчитывающей около 8000 человек, значителен процент карликов с многопалостью (13% меннонитов гетерозиготны по гену, который в гомозиготном состоянии обусловливает появление таких карликов); это объясняется тем, что члены секты вступают в брак только между собой, а такая изоляция способствует появлению гомозиготных индивидуумов. В больших популяциях Г.-а. п. не могут обусловить такой стабилизации или элиминации аллелей, т.к. влияние этих процессов компенсируется за счёт разных факторов в последующих поколениях или в разных подразделениях популяции. Теория Г.-а. п. объяснила генетические последствия изоляции, судьбу рецессивных мутаций на уровнях малых концентраций и эволюцию популяций по нейтральным признакам. Г.-а. п. объясняют многие расовые различия человека, возникшие без действия отбора. Наряду с термином «Г.-а. п.» широко используется термин «дрейф генов», предложенный С. Райтом. Советский генетик С. С. Четвериков, подчёркивая роль вероятностно-статистических закономерностей при дрейфе генов, предлагал назвать это явление генетико-стохастическими процессами.
Лит.: Дубинин Н. П., Эволюция популяции и радиация, М., 1966, с. 421—33.
Н. П. Дубинин, В. Н. Сойер.
Генетиков и селекционеров общество
Гене'тиков и селекционе'ров о'бщество Всесоюзное имени Н. И. Вавилова (ВОГИС) научно-общественная организация при АН СССР, объединяющая ученых и практиков СССР, ра6отающих в области генетики и селекции. Создано в 1965. 30—31 мая 1966 Москве состоялся учредительный съезд общества; был утвержден устав общества избраны центральный совет (80 чел.) и президиум (23 чел.; находится в Москве). Президентом избран Б. Л. Астауров. К началу 1971 общество насчитывало 3670 член, имело 26 отделений в столицах союзных республик, краевых, областных центрах и др. городах. Цели и задачи ВОГИС: активное участие в развитии всех отраслей генетики и селекции, повышение квалификации членов общества и реализация их исследований, популяризация и пропаганда новейших теоретических и практических достижений в области генетики и селекции, содействие преподаванию генетики и селекции в средней и высшей школе.
В. Ф. Мирек.
Генетическая информация
Генети'ческая информа'ция, заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных органеллах), получаемая от предков в виде совокупности генов информация о составе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при половом размножении Г. и. передается из поколения в поколение через посредство половых клеток — гамет, единственная функция которых — передача и хранение Г. и. У микроорганизмов и вирусов имеются особые типы передачи Г. и. (см. Сексдукция, Трансдукция, Трансформация). Г. и. заключена преимущественно в хромосомах, где она зашифрована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (см. Генетический код). Г. и. реализуется в ходе онтогенеза— развития особи — передачей Г. и. от гена к признаку. Все клетки организма возникают в результате делений единственной исходной клетки — зиготы— и потому имеют один и тот же набор генов — потенциально одну и ту же Г. и. Специфичность клеток разных тканей определяется тем, что в них активны разные гены, т. е. реализуется не вся Г. и., а только её часть, необходимая для функционирования данной ткани.
Ю. С. Демин.
Генетические карты хромосом
Генети'ческие ка'рты хромосо'м, схемы относительного расположения сцепленных между собой наследственных факторов — генов. Г. к. х. отображают реально существующий линейный порядок размещения генов в хромосомах (см. Цитологические карты хромосом) и важны как в теоретических исследованиях, так и при проведении селекционной работы, т.к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Г. к. х., можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать передачу потомству генов, обусловливающих развитие трудно анализируемых признаков; например, ген, определяющий эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения. Многочисленные факты отсутствия (вопреки Менделя законам) независимого распределения признаков у гибридов второго поколения были объяснены хромосомной теорией наследственности. Гены, расположенные в одной хромосоме, в большинстве случаев наследуются совместно и образуют одну группу сцепления, количество которых, т. о., соответствует у каждого организма гаплоидному числу хромосом (см. Гаплоид). Американский генетик Т. Х. Морган показал, однако, что сцепление генов, расположенных в одной хромосоме, у диплоидных организмов (см. Диплоид) не абсолютное; в некоторых случаях перед образованием половых клеток между однотипными, или гомологичными, хромосомами происходит обмен соответственными участками; этот процесс носит название перекреста, или кроссинговера. Обмен участками хромосом (с находящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем выше вероятность кроссинговера и, следовательно, рекомбинации). Генетический анализ позволяет обнаружить перекрест только при различии гомологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Г. к. х. выражают как % кроссинговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему количеству изученных особей); единица этого расстояния — морганида — соответствует частоте кроссинговера в 1%.