Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Грин Брайан. Страница 54
Ответ, который в неявной форме содержится в работе Калуцы, и который позднее был выражен в явном виде и уточнен шведским математиком Оскаром Клейном в 1926 г., состоит в том, что структура пространства нашей Вселенной может содержать как протяженные, так и свернутые измерения. Это значит, что в нашей Вселенной есть измерения, которые являются просторными, протяженными и легко доступными для наблюдения, подобно длине Садового шланга. Однако, подобно циклическому измерению того же шланга, Вселенная может содержать и дополнительные пространственные измерения, которые туго скручены в ничтожно малой области — столь малой, что она не может быть обнаружена даже с помощью самого современного экспериментального оборудования.
Чтобы получить более ясное представление о сути этого замечательного предложения, вернемся на минуту к примеру с Садовым шлангом. Представим себе, что на шланге черной краской нарисовано с малым шагом большое количество охватывающих его окружностей. Издалека шланг по-прежнему выглядит тонкой одномерной линией. Но, взглянув на него в бинокль, вы обнаружите свернутое измерение; после окраски найти его будет еще легче, чем раньше. Оно будет выглядеть так, как показано на рис. 8.2. Ясно видно, что поверхность шланга является двумерной, с одним крупным и протяженным измерением, а другим небольшим и имеющим форму окружности.
Рис. 8.2. Поверхность Садового шланга является двумерной. Одно измерение(идущее вдоль горизонтальной оси шланга), отмеченное прямой стрелкой, является длинным и протяженным. Другое измерение (окружность шланга), отмеченное круговой стрелкой, является маленьким и свернутым.
Калуца и Клейн предположили, что аналогичную структуру имеет и наша Вселенная, только в ней имеется три обычных, протяженных измерения и одно маленькое, циклическое; таким образом, общее число пространственных измерений равно четырем. Нарисовать предмет в пространстве с таким числом измерений непросто, поэтому для большей наглядности мы ограничились случаем двух протяженных и одного маленького циклического измерения. Мы изобразили это на рис. 8.3, где структура пространства последовательно увеличивается примерно так же, как в случае поверхности Садового шланга.
Самое нижнее изображение на рисунке показывает видимую структуру пространства — обычный окружающий нас мир в привычном масштабе расстояний, например, в метрах. Эти расстояния представлены самой редкой сеткой. На последующих изображениях структура пространства показана со все большим увеличением: мы фокусируем взгляд на все меньших областях, которые последовательно увеличиваем, чтобы сделать их видимыми. Сначала при переходе к меньшим расстояниям не происходит ничего особенного; на первых трех уровнях увеличения пространство сохраняет основные особенности своей структуры. Однако, по мере того как мы продолжаем наше путешествие вглубь микромира, на четвертом уровне увеличения на рис. 8.3 появляется новое, свернутое циклическое измерение, напоминающее круговые петли на ковре плотной вязки.
Рис. 8.3. Как и на рис. 8.1, каждый последующий уровень представляет значительное увеличение пространственной структуры, показанной на предыдущем уровне. Видно, что наша Вселенная может иметь дополнительные измерения (как это показано на четвертом уровне увеличения), коль скоро они свернуты в столь малые пространственные образования, что не поддаются прямому наблюдению.
Калуца и Клейн предположили, что дополнительное циклическое измерение существует в каждой точке пространства, определяемого протяженными измерениями, точно так же, как круговой ободок существует в каждой точке вдоль оси развернутого горизонтального шланга. (Для большей наглядности мы изобразили циклические измерения только в точках, равномерно расположенных на протяженных измерениях.) На рис. 8.4 крупным планом показана микроструктура пространства, какой ее видели Калуца и Клейн.
Рис. 8.4. Линии сетки соответствуют обычным протяженным измерениям; кружками показаны новые малюсенькие свернутые измерения. Подобно круговым петелькам, образующим ворс ковра, эти кружки существуют в каждой точке протяженных измерений, однако чтобы не загромождать рисунок, мы нарисовали их только в узлах сетки.
Несмотря на очевидное сходство с Садовым шлангом, есть и несколько важных различий. Вселенная имеет три протяженных пространственных измерения (мы показали только два из них) по сравнению с одним таким измерением у Садового шланга. Однако еще важнее то, что на этом рисунке мы показали пространственную структуру самой Вселенной, а не просто объекта (такого как Садовый шланг), который существует внутри Вселенной. Но основная идея остается неизменной: если дополнительные, свернутые циклические измерения нашей Вселенной, подобные круговым ободкам на Садовом шланге, являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяженные измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяженных измерений, как может показаться при взгляде на рисунок. Напротив, циклическое измерение представляет собой новое измерение, которое существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперед-назад, которые также существуют в каждой точке. Это новое и независимое направление, в котором мог бы двигаться муравей, если бы он был достаточно мал. Чтобы определить пространственное положение такого микроскопического муравья, нам потребуется указать, где он находится в обычных пространственных измерениях (представленных сеткой), а также где он расположен на циклическом измерении. Для представления информации о расположении в пространстве потребуется четыре числа; если добавить время, пространственно-временная информация потребует пяти параметров, на один больше, чем мы привыкли думать.
Итак, мы пришли к довольно удивительным выводам. Хотя мы наблюдаем только три протяженных пространственных измерения, рассуждения Калуцы и Клейна показывают, что это не исключает существования дополнительных, свернутых измерений, по крайней мере, если они достаточно малы. Вселенная вполне может иметь больше измерений, чем доступно нашему глазу.
Насколько малы должны быть эти измерения? Современная техника может обнаружить объекты, размер которых составляет одну миллиардную от одной миллиардной доли метра. Если дополнительное измерение свернуто до размера, который меньше этого значения, обнаружить его невозможно. В 1926 г. Клейн объединил первоначальное предположение Калуцы с некоторыми идеями бурно развивавшейся квантовой механики. Его расчеты показали, что дополнительное циклическое измерение по размерам сопоставимо с планковской длиной, что выходит далеко за рамки современных возможностей экспериментального изучения. С этого времени физики стали называть гипотезу о существовании дополнительных крошечных пространственных измерений теорией Калуцы-Клейна 2).
Наглядный пример Садового шланга и иллюстрации, приведенные на рис. 8.3, призваны прояснить то, почему наша Вселенная может иметь дополнительные пространственные измерения. Но даже специалистам, ведущим исследования в этой области, трудно наглядно представить Вселенную, имеющую более трех пространственных измерений. По этой причине физики, следуя примеру Эдвина Эббота3), опубликовавшего в 1884 г. увлекательную книгу Флатляндия ставшую классикой популярного жанра, часто стремятся развить свои интуитивные представления о дополнительных измерениях, пытаясь представить, на что была бы похожа жизнь в воображаемой вселенной, имеющей меньшее число измерений, живя в которой мы постепенно осознаем, что она имеет больше измерений, чем прямо доступно нашему наблюдению. Попробуем вообразить двумерную вселенную, по форме напоминающую Садовый шланг. При этом мы должны отказаться рассматривать шланг с точки зрения «внешнего» наблюдателя как объект нашей Вселенной. Мы должны переместиться из нашего мира во вселенную Садового шланга, в которой поверхность очень длинного Садового шланга (вы можете считать его бесконечно длинным) являет собой все пространство этой вселенной. Представьте себе, что вы крошечный муравей, живущий своей жизнью на этой поверхности.