Первоначала вещей(Очерк о строении вещества) - Кудрявцев Борис Сергеевич. Страница 11

Если сравнивать различные тела по их сжимаемости, то жидкости надо было бы отнести в одну группу с твердыми телами, а не с газами.

К тому же заключению о сходстве твердых и жидких тел приводит сравнение их плотности.

Плотность различных веществ в газообразном состоянии обычно в тысячи раз меньше, чем их плотность в жидком состоянии. Другими словами, при испарении объем, занимаемый веществом, увеличивается в тысячи раз.

Иная картина наблюдается при плавлении, то-есть при превращении твердого тела в жидкость. Увеличение объема при этом невелико, оно составляет приблизительно десятую часть объема, занимаемого твердым телом.

В некоторых, правда немногочисленных, случаях при плавлении объем, занимаемый телом, даже уменьшается, так что плотность жидкости оказывается большей, чем плотность твердого тела. К таким необычным по изменению плотности веществам относятся вода, чугун, висмут.

Раз объем тел при плавлении изменяется незначительно, незначительно изменяются и расстояния между молекулами, а следовательно, и силы, действующие между ними.

Можно предположить поэтому, что движение мельчайших частиц вещества в жидкостях напоминает движение частиц в твердых телах, а не в газах. Это предположение нетрудно проверить. От характера движения частиц зависит теплоемкость вещества. Сравнив теплоемкость жидких и твердых тел, ученые убедились в том, что они действительно близки друг к другу, то-есть что движение мельчайших частиц жидкости напоминает движение атомов твердых тел, а не молекул газов.

Мы видим, что поступили правильно, не сделав поспешного вывода о родстве жидкостей и газов.

Если подвижность частиц и одинаковость свойств во всех направлениях роднят жидкости с газами, то плотность, теплоемкость и малая сжимаемость их указывают на сходство жидкостей и твердых тел.

Заметим, что если жидкость заставить быстро изменять форму, то она приобретает еще одну черту, роднящую ее с твердыми телами, а именно — делается хрупкой.

Мы привыкли к тому, что быть хрупкими, то-есть способными разламываться, могут только твердые тела. Оказывается, это неверно: при очень быстром ударе жидкость разламывается, как хрупкое твердое тело.

На рисунке 19 вы видите струю очень вязкой жидкости, которую пересекает медленно движущаяся палочка.

Первоначала вещей<br />(Очерк о строении вещества) - i_020.png

Рис. 19. При медленном движении палочки струя вязкой жидкости изгибается.

Видно, как под давлением палочки струя изогнулась, в следующее мгновение она разорвется — палочка ее пересечет. Не то будет, если палочка ударит по струе достаточно быстро. В этом случае (рис. 20) струя разломается, как если бы она была сделана из стекла.

Первоначала вещей<br />(Очерк о строении вещества) - i_021.png

Рис. 20. При быстром ударе струя разламывается, как хрупкое тело.

На рисунке хорошо видны «осколки» жидкости, отброшенные при ударе.

Итак, мы убедились в том, что привычная нам текучесть жидкостей не является непреодолимым барьером между жидкостями и твердыми телами. При определенных условиях жидкость может быть хрупкой.

Чему же отдать предпочтение? Если на одну чашку весов положить свойства, роднящие жидкости с твердыми телами, а на другую — роднящие с газами, какая из чашек перетянет?

Оказывается, что ответить на этот вопрос нельзя, и вот почему.

Свойства жидкости сильно изменяются при изменении температуры. При низкой температуре, близкой к той, при которой жидкость затвердевает, свойства жидкости ближе к свойствам твердого тела. По мере же повышения температуры жидкость все более походит на газ, поведение мельчайших частиц, образующих жидкость, приближается к поведению молекул газа.

Кочующие маятнички

Каково же молекулярное строение жидкости?

Молекулы газа или пара движутся по причудливо изломанным линиям. Отдельные участочки этих линий много больше размеров самих молекул.

В жидкости положение иное.

Молекулы жидкости располагаются очень близко друг к другу. Поэтому их движение напоминает скорее дрожание, при котором они только незначительно смещаются, постоянно возвращаемые назад ударами соседних молекул. Сравнительно редко какой-нибудь молекуле удается вырваться из тесного окружения своих соседей. Большую же часть времени она движется как бы в клеточке, стенки которой образуют ближайшие к ней частицы.

Движение молекулы в этой ячейке напоминает движение маятника стенных часов-ходиков. Такое движение называют колебательным.

Имеется, однако, существенное отличие колебаний, совершаемых маятником часов, от колебаний молекул жидкости. При колебании маятника подвес его остается неподвижным и только диск отклоняется попеременно то вправо, то влево. Уподобляя движения молекулы жидкости колебаниям маятника, необходимо предположить, что и подвес маятника, вместо «оседлого» образа жизни, то и дело кочует с одного места на другое. В течение периода «оседлой жизни» молекула колеблется внутри ячейки. В период «кочевья» она перебирается в соседнюю ячейку. За время, которое частица проводит в какой-либо ячейке, она успевает совершить большое число колебаний.

Однако если температура жидкости будет увеличиваться, молекулы станут все чаще и чаще кочевать из одной ячейки в другую. Тем самым время их «оседлой жизни» уменьшится, и сам характер движения будет все более напоминать движение молекул газа.

Почему же поверхность спокойной жидкости представляется нам неподвижной, почему мы не замечаем непрерывного дрожания молекул?

Еще Ломоносов в одном из своих сочинений писал: «Ведь нельзя отрицать существование движения там, где его не видно: кто, в самом деле, будет отрицать, что когда через лес проносится сильный ветер, то листья и сучки дерев колышутся, хотя бы при рассматривании издали глаз не видел движения. Точно так же, как здесь вследствие расстояния, так и в теплых телах вследствие малости частиц движущейся материи, колебание ускользает от взора».

И в самом деле. Посмотрите на лезвие безопасной бритвы. Каким ровным и гладким оно нам представляется. А теперь взгляните на рисунок 21.

На нем изображен маленький участок того же лезвия, каким он виден в электронный микроскоп. А ведь обычные по своим размерам молекулы и в электронный микроскоп не видны. Неудивительно, что тепловое движение молекул нельзя увидеть.

Первоначала вещей<br />(Очерк о строении вещества) - i_022.png

Рис. 21. Так выглядит маленький участок лезвия безопасной бритвы под электронным микроскопом.

Какую же скорость имеют молекулы жидкости?

Оказывается, что средняя скорость теплового движения молекул жидкости такая же, как и у газа, молекулы которого имеют тот же вес, взятого при той же температуре. И так же, как и у газов, у жидкостей скорость беспорядочного движения молекул растет с ростом температуры.

Таким образом, тепловое движение молекул жидкости, особенно при высокой температуре, имеет черты сходства с движением молекул газа, не исключающие, однако, существенного различия. Это различие еще более усугубится, если учесть, что полная беспорядочность в расположении молекул, характеризующая газ, сменяется у жидкостей некоторой упорядоченностью. Если мысленно выделить, отметить каким-либо способом одну из молекул жидкости, то окажется, что ближайшая к ней молекула будет всегда находиться на совершенно определенном расстоянии от нее и это расстояние одинаково для всех окружающих ее молекул.

Это уже элемент порядка!

Примечательно, что упорядоченность в расположении частиц жидкости ограничивается только ближайшим окружением выбранной молекулы. Положение молекул, следующих за ближайшими соседями отмеченной молекулы, уже не будет так точно определенно, как положение ее непосредственных соседей.