Глазами физика. От края радуги к границе времени - Левин Уолтер. Страница 11

Учитывая, насколько малы размеры углов параллакса, которые должны измерять астрономы для определения расстояний до звезд, отлично понимаешь, как важна для них степень точности данных измерений.

По мере появления специального оборудования, позволяющего астрономам производить все более точные измерения, их оценки расстояний до звезд порой весьма существенно менялись. В начале XIX века Томас Хендерсон измерил параллакс самой яркой звезды на небе, Сириуса, и определил, что он равен 0,23 угловой секунды с погрешностью около четверти угловой секунды. Иными словами, по оценке Хендерсона, верхний предел параллакса Сириуса составляет около половины угловой секунды, а это означало, что данная звезда находится от нас не ближе чем на расстоянии 6,5 световых года. Для 1839 года это был очень важный вывод. Но спустя полвека Дэвид Гилл определил, что параллакс Сириуса равен 0,370 угловой секунды с погрешностью плюс-минус 0,010 угловой секунды. Измерения Гилла не противоречили данным Хендерсона, но были намного точнее, потому что их погрешность была в двадцать пять раз меньше. При параллаксе 0,370 ± 0,010 угловой секунды расстояние до Сириуса становится равным 8,81 ± 0,23 световых года, что существенно больше шести с половиной световых лет!

В 1990-е годы спутник для высокоточных определений параллаксов с названием (подозреваю, создатели долго с ним экспериментировали, пока не подогнали под имя древнегреческого астронома Гиппарха) Hipparcos (акроним от High Precision Parallax Collecting Satellite) измерил параллаксы более ста тысяч звезд (и, следовательно, расстояния до них) с относительной погрешностью всего около одной тысячной угловой секунды. Разве это не невероятно? Помните, как далеко должна находиться монетка, чтобы ее диаметр составлял одну угловую секунду? А чтобы он был равен тысячной доле угловой секунды, монетка должна находиться за 3,5 тысячи километров от наблюдателя.

Одной из звезд, параллакс которых измерили с помощью Hipparcos, был, конечно же, Сириус; аппарат получил результат 0,37921 ± 0,00158 угловой секунды, что дает нам расстояние до Сириуса, равное 8,601 ± 0,036 световых года.

До этого самые точные измерения параллакса из всех когда-либо сделанных были получены радиоастрономами в период с 1995-го по 1998 год для очень специфической звезды по имени SCO X-1. Я подробнее расскажу о ней в главе 10. Ученые получили результат 0,00036 ± 0,00004 угловые секунды, что означает расстояние 9,1 ± 0,9 тысячи световых лет.

Кроме погрешности, вызванной ограниченной точностью оборудования и лимитами доступного для наблюдений времени, следует упомянуть о еще одном кошмаре астрономии – «неизвестных/скрытых» погрешностях. Что, если вы делаете ошибку, даже не осознавая этого, потому что упускаете что-то важное или потому, что ваши инструменты неправильно выверены? Предположим, ваши весы в ванной комнате неверно откалиброваны и показывают значительно меньший, чем на самом деле, вес, причем вы их такими и купили. Вы обнаруживаете ошибку, только придя на прием к врачу – и с вами чуть не случается сердечный приступ. Мы называем такое явление систематической ошибкой, и она пугает нас до смерти. Я отнюдь не поклонник бывшего министра обороны Дональда Рамсфелда, но почувствовал к нему некоторое сочувствие, когда он на брифинге в 2002 году сказал: «Мы знаем, что есть вещи, которых мы не знаем. Но есть еще и неизвестное неизвестное – то, чего мы не знаем, оставаясь в неведении о том, что именно мы не знаем».

Проблемы, связанные с ограничениями астрономического оборудования, делают еще более удивительными достижения блестящего, но по большей части недооцененного женщины-астронома Генриетты Суон Ливитт. Ливитт занимала в Гарвардской обсерватории очень скромную должность, но в 1908 году начала работу, которая позволила совершить гигантский скачок в деле измерения расстояний до звезд.

Увы, такого рода вещи случаются в истории науки так часто, что данную ситуацию тоже следовало бы рассматривать как систематическую ошибку: когда научный мир недооценивает талант, интеллект и вклад женщин-ученых [9].

Занимаясь анализом тысяч фотографических пластин Малого Магелланова облака, Ливитт заметила, что в определенном классе больших пульсирующих звезд (ныне их называют переменными цефеидами) четко выражена зависимость между яркостью звезды в оптическом диапазоне и временем, которое ей требуется для одной полной пульсации, известным как период звезды. Ливитт обнаружила, что чем больше этот период, тем ярче звезда. Как мы с вами убедимся, это открытие распахнуло астрономам двери к точным измерениям расстояний до звездных скоплений и галактик.

Чтобы оценить это открытие по достоинству, сначала необходимо понять разницу между яркостью звезды в оптическом диапазоне и ее светимостью. Яркость – это количество энергии на квадратный метр на секунду света, достигающего Земли. Она измеряется с помощью оптических телескопов. А светимость – это количество энергии в секунду, излучаемой астрономическим объектом.

Возьмем, например, Венеру – обычно самый яркий объект на всем ночном небе, даже ярче Сириуса, который считается самой яркой звездой нашего небосвода. Венера находится достаточно близко к Земле и именно поэтому такая яркая, но у нее практически отсутствует внутренняя светимость. Она излучает довольно мало энергии по сравнению с Сириусом – мощным горнилом, вдвое массивнее Солнца с примерно в двадцать пять раз большей светимостью. Светимость объекта многое говорит о нем астрономам, но проблема в том, что у нас не было надежного способа ее измерения. Яркость можно измерить, потому что она видима; светимость измерить невозможно. Для этого необходимо знать как яркость звезды, так и расстояние до нее.

Используя методику под названием статистический параллакс, Эйнар Герцшпрунг в 1913 году и Харлоу Шепли в 1918-м сумели преобразовать значения яркости, полученные Ливитт, в светимость. А предположив, что светимость цефеиды с заданным периодом в Малом Магеллановом облаке такая же, как и у цефеиды с тем же периодом в другом месте, они получили способ вычислить соотношение светимости всех цефеид (даже не входящих в Малое Магелланово облако). Я не буду подробно останавливаться на данном методе, поскольку это потребует довольно глубокого погружения в технические детали, но отмечу, что выявление взаимосвязи между светимостью и периодом звезды стало важнейшей вехой в деле измерения расстояний до звезд. Зная светимость звезды и ее яркость, вы можете вычислить, на каком расстоянии от Земли она находится.

Кстати, диапазон светимости цефеид довольно велик. У цефеиды с периодом в три дня светимость приблизительно в тысячу раз больше светимости Солнца, а при периоде в тридцать дней превышает данный показатель Солнца почти в тринадцать тысяч раз.

В 1923 году великий астроном Эдвин Хаббл обнаружил цефеиды в галактике Андромеды (также известной как M31), благодаря чему вычислил, что расстояние до нее составляет около 1 миллиона световых лет – результат, повергший в шок немало астрономов. Многие, в том числе Шепли, утверждали, что вся Вселенная, включая M31, входит в наш собственный Млечный Путь. Хаббл же показал, что на самом деле она практически невообразимо от нас далека. Но это еще не все – если выполнить поиск в интернете, то можно обнаружить, что галактика Андромеды находится от нас на расстоянии 2,5 миллиона световых лет.

Это и есть яркий пример неизвестного неизвестного. При всей своей гениальности Хаббл допустил систематическую ошибку. Он основывал свои расчеты на известной светимости звезд, которые впоследствии стали называть цефеиды типа II, хотя на самом деле наблюдал разновидность цефеид с примерно в четыре раза большей светимостью, нежели думал (позже их назвали цефеиды типа I). Астрономы обнаружили разницу только в 1950-х годах и поняли, что измерения расстояний в предыдущие тридцать лет давали искаженный результат – имела место серьезная систематическая ошибка, из-за которой размер известной Вселенной был преувеличен в два раза.