Глазами физика. От края радуги к границе времени - Левин Уолтер. Страница 45

Откуда же мы получаем все то электричество, которым столь активно сегодня пользуемся? В основном нам его дают электростанции, вырабатывающие его с помощью электрических генераторов, которые на базовом уровне делают не что иное, как перемещают медные катушки через магнитные поля; мы больше не двигаем магниты. Первый генератор Майкла Фарадея представлял собой медный диск, вращаемый им с помощью рукоятки между двумя концами подковообразного магнита. Щетка на внешнем крае диска подсоединялась к одному концу провода, щетка на центральном валу поворотного диска – ко второму. Если бы ученый подсоединил два провода к амперметру, прибор измерял бы генерируемый устройством ток. Энергия (мышечная сила!), вкладываемая им в свою систему, преобразовывалась несложным устройством в электричество. Но генератор Фарадея был не слишком эффективным по целому ряду причин, не последней из которых была необходимость кому-то вручную вращать медный диск. В сущности, нам следовало бы назвать генераторы энергии преобразователями, ведь они всего лишь преобразуют энергию одного вида, в данном случае кинетическую, в энергию другого вида, в данном случае электрическую. Иными словами, никакой дармовщины! (Более подробно преобразование энергии обсуждается в следующей главе.)

Преобразование электричества в движение

Теперь, узнав, как движение преобразуется в электричество, давайте подумаем об обратном процессе, то есть как электричество преобразуется в движение. В конце концов, автомобильные компании тратят миллиарды долларов на разработку электромобилей, задача которых заключается именно в этом. Любой автопроизводитель мечтает изобрести эффективные, мощные электродвигатели для этих автомобилей. Но что же такое двигатели? По сути, это устройства, преобразующие электрическую энергию в движение. Все они базируются на, казалось бы, простом принципе, в действительности довольно сложном: если поместить катушку электропровода (через которую пропускается ток) рядом с магнитным полем, она начнет вращаться. Скорость ее вращения зависит от ряда факторов: силы тока, силы магнитного поля, формы катушки и так далее. Физики говорят, что магнитное поле придает катушке крутящий момент. «Крутящий момент» – это термин, обозначающий силу, которая и заставляет катушку вращаться.

Если вам когда-либо приходилось менять шину, вы, конечно же, отлично представляете себе, что такое крутящий момент. Вам, например, известно, что одна из самых сложных частей этой операции состоит в том, чтобы ослабить болты, которыми колесо крепится к оси. Поскольку эти болты, как правило, прикручены очень сильно, а иногда кажутся просто приваренными, вам приходится прилагать огромное усилие, чтобы открутить их монтировкой. И чем длиннее ее ручка, тем больше крутящий момент. Если ручка очень длинная, вы можете приложить совсем незначительное усилие и ослабить болты. А чтобы затянуть их после замены колеса, вы прикладываете крутящий момент в противоположном направлении.

Конечно, иногда, как ни стараешься, сдвинуть болт с места не получается. В этом случае вы либо применяете WD-40 [19] (всегда имейте WD-40 в багажнике – для этой и многих других целей) и, немного подождав, откручиваете болт, либо лупите по монтировке молотком (этот инструмент тоже всегда должен быть в багажнике!).

Мы не станем вникать в сложности крутящего момента. Вам достаточно знать, что если пропустить ток через катушку (можно использовать аккумулятор) и поместить ее в магнитное поле, к ней начнет прилагаться крутящий момент и катушка станет вращаться. Чем сильнее ток, тем сильнее магнитное поле и тем больше крутящий момент. Этот принцип лежит в основе электродвигателя постоянного тока, смастерить простую версию которого не составит труда.

Чем конкретно отличается постоянный ток от переменного? Полярность сторон «плюс» и «минус» аккумулятора не меняется (плюс остается плюсом, а минус – минусом). Таким образом, если подключить батарею к электропроводу, ток всегда будет течь в одном направлении, и его мы называем постоянным. Однако в США разность потенциалов между двумя дырочками электрической розетки чередуется с частотой 60 герц. В Нидерландах и большинстве стран Европы она составляет 50 герц. Если воткнуть провод, скажем, лампочки накаливания или обогревателя, в розетку у вас дома, ток будет колебаться (менять направление на противоположное и обратно) с частотой 60 герц (то есть 120 раз в секунду). Это называется переменным током.

Ежегодно на моих лекциях по электричеству и магнетизму проходит любопытный конкурс двигателей. (Впервые за несколько лет до меня его провели мои коллеги и друзья профессора Вит Бурза и Виктор Вайскопф.) Каждый студент получает конверт с простыми исходными материалами: два метра медного провода с изоляцией, две канцелярские скрепки, две чертежные кнопки, два магнита и небольшой брусок дерева. От студентов требуется принести батарейку типа AA с электрическим потенциалом в 1,5 вольта. Они могут использовать любой инструмент, пилить дерево и сверлить отверстия, но двигатель должен быть собран только из материалов, находящихся в конверте (клейкая лента и клей запрещены). Из этих простых ингредиентов студентам нужно построить двигатель, который будет работать быстрее других (то есть совершать наибольшее число оборотов в минуту). Скрепки предназначены для того, чтобы стать опорами для вращающейся катушки; провод необходим, чтобы сделать саму катушку; а магниты надо расположить так, чтобы обеспечить в катушке крутящий момент при прохождении по ней тока от аккумулятора.

Теперь предположим, что вы решили принять участие в конкурсе. Вы подключаете аккумулятор к своей катушке, и та начинает вращаться по часовой стрелке. Все идет нормально. Но, к вашему большому удивлению, катушка вскоре останавливается. Причина в том, что после каждого полуоборота крутящий момент, прилагаемый к ней, меняет направление на обратное. Реверсирование крутящего момента будет препятствовать вращению по часовой стрелке; катушка может даже какое-то короткое время вращаться против часовой стрелки. Очевидно, это не то, чего мы хотим добиться от своего двигателя. Нам нужно получить непрерывное вращение только в одном направлении (будь то по часовой стрелке или против нее). Эту проблему можно решить путем изменения направления тока, проходящего через катушку, на обратное после каждого полуоборота. Тогда крутящий момент будет прилагаться к катушке всегда в одном и том же направлении и, следовательно, она будет вращаться только в одном направлении.

Мастеря двигатели, студентам нужно решить неизбежную проблему реверсии крутящего момента, и мало кому из них удается собрать так называемый коммутатор – устройство, разворачивающее ток в обратную сторону после каждого полуоборота. Впрочем, это действительно довольно сложно. К счастью, есть одно очень умное и простое решение задачи, не требующее изменения направления тока. Если сделать так, чтобы ток (и, следовательно, крутящий момент) после каждого полуоборота стремился к нулю, крутящий момент в катушке в течение половины каждого оборота вообще отсутствует, а в течение другой половины каждого оборота всегда направлен в одну и ту же сторону. В результате катушка продолжает вращаться.

Я набавляю по очку за каждые сто оборотов в минуту, которые делает собранный конкурсантом двигатель, – и так максимум до двадцати очков. Студенты обожают этот проект, а поскольку речь идет о студентах Массачусетского технологического института, за много лет, которые я преподаю, они придумали несколько поистине удивительных конструкций.

Должен сказать, почти всем студентам без особого труда удается собрать двигатель, делающий около 400 оборотов в минуту. Как же они заставляют катушку вращаться в одном и том же направлении? Прежде всего, так как проволока полностью изолирована, надо соскрести изоляцию с одного конца катушки так, чтобы она всегда контактировала с одной из сторон аккумулятора – какой конец выбирает студент, не имеет значения. Со вторым концом провода дело обстоит значительно сложнее. Необходимо сделать так, чтобы ток через катушку шел только половину оборота – иными словами, найти способ разорвать цепь на полпути. Поэтому конкурсанты соскребают со второго конца провода половину изоляции. Это означает, что лишь половина окружности проволоки не изолирована. В те периоды, когда ток прекращается (каждую половину оборота), катушка продолжает вращаться даже без крутящего момента, прилагаемого к ней (трения недостаточно, чтобы остановить ее на половине оборота). Конечно, чтобы определить, как именно надо соскоблить изоляцию и какая именно половина провода должна быть голой, требуется немного поэкспериментировать – но как я уже сказал, почти всем ребятам удается получить результат в 400 оборотов в минуту. Это удавалось и мне – но у меня никак не получалось достичь значительно лучшего показателя.