Глазами физика. От края радуги к границе времени - Левин Уолтер. Страница 62

Самая экстравагантная гибель звезды – гибель в результате коллапса ядра сверхновой, одно из самых энергетических явлений во Вселенной. Постараюсь отдать ей должное. Когда реакция в ядерном реакторе в ядре массивной звезды начинает сходить на нет – в конце концов, никакое топливо не может гореть вечно! – и генерируемое ею давление ослабевает, неустанное и вечное гравитационное притяжение остальной массы решительно берет над ним верх.

Процесс истощения топлива на самом деле довольно сложен, тем не менее весьма увлекателен. Как и большинство звезд, действительно массивные звезды начинают со сжигания водорода и создания гелия. Звезды питаются ядерной энергией – но не деления, а синтеза: при экстремально высоких температурах четыре ядра водорода (протоны) сплавляются в ядро гелия, в результате чего выделяется тепло. Когда у этих звезд заканчивается водород, из-за гравитации их ядра сжимаются, что повышает температуру до показателей, достаточно высоких, чтобы начать связывать гелий до углерода. Звезды с массами, примерно в десять раз превышающими массу Солнца, после сжигания углерода начинают сжигать кислород, потом неон, затем кремний, и в конечном счете у них получается железное ядро.

После каждого цикла горения ядро сжимается, его температура повышается, и запускается следующий цикл. Каждый очередной цикл вырабатывает меньше энергии, чем предыдущий, и короче предыдущего. Для примера скажу, что, в зависимости от точной массы звезды, цикл сжигания водорода может длиться 10 миллионов лет при температуре около 35 миллионов кельвинов, но последний цикл, цикл кремния, продолжается всего несколько дней при температуре около трех миллиардов кельвинов! Во время каждого цикла звезды сжигают большинство продуктов, образовавшихся в предыдущем цикле. Вот что я называю серьезным подходом к переработке!

Конец наступает, когда в результате синтеза кремния получается железо – химический элемент с самым устойчивым ядром из всех элементов периодической таблицы. При синтезе железа в более тяжелые ядра энергия не вырабатывается: этот процесс сам требует энергии, и генерирующий ее реактор останавливается. Железное ядро быстро растет по мере того, как звезда вырабатывает все больше и больше железа.

Когда железное ядро вырастает до примерно 1,4 солнечной массы, оно достигает своего рода магического предела, известного в астрономии как предел Чандрасекара [25] (кстати, его фамилия связана с именем индийского бога Луны Чандры). В этот момент давление в ядре уже не может противодействовать мощному давлению силы тяготения, и ядро схлопывается, приводя к направленной вовне вспышке сверхновой.

Представьте себе огромную армию, осаждающую некогда гордый замок, внешние стены которого начинают разрушаться. (Мне лично вспоминаются сцены из фильма «Властелин колец», в которых бесчисленные армии орков прорываются через стены крепости.) Ядро схлопывается за миллисекунды, и падающая при этом в центр звезды материя – на самом деле она влетает на фантастической скорости, равной четвертой части скорости света, – повышает температуру внутри ядра до невообразимых 100 миллиардов кельвинов, что почти в десять тысяч раз горячее ядра Солнца.

Если масса одиночной звезды меньше двадцати пяти масс Солнца (но больше десяти его масс), коллапс создает в ее центре объект совершенно нового вида – нейтронную звезду. Одиночные звезды с массами от восьми до десяти масс Солнца тоже в конечном итоге рождают нейтронные звезды, но их ядерная эволюция (ее мы обсуждать не будем) несколько отличается от описанного сценария.

При высокой плотности коллапсирующего ядра электроны и протоны сливаются друг с другом. Отрицательный заряд отдельного электрона нейтрализует положительный заряд протона, и они объединяются, создавая нейтрон и нейтрино. Отдельных ядер больше не существует, они исчезают, превращаясь в массу того, что известно как вырожденная нейтронная материя (ну наконец-то впечатляющее название!). Еще мне очень нравится название противодействующего давления – давление нейтронного вырождения. Если масса этой потенциально нейтронной звезды начинает превышать массу трех Солнц, что случается, когда масса одиночной звезды (прародитель) примерно в 25 раз больше массы Солнца, сила тяготения превосходит даже давление нейтронного вырождения. Как думаете, что тогда происходит? Попробуйте угадать.

Верно. Я так и знал, что вы догадаетесь. Что же еще, как не черная дыра – место, где материя не может существовать в любой понятной нам форме, где, если приблизиться, гравитация настолько сильна, что не излучается ничего: ни свет, ни рентгеновские лучи, ни гамма-лучи, ни нейтрино, ничего. Эволюция в двойных системах звезд (подробнее об этом поговорим в следующей главе) может происходить совершенно иначе, потому что в такой системе оболочка массивной звезды нередко удаляется на ранней стадии и масса ядра не может вырасти так сильно, как в одиночной звезде. В этом случае даже звезда, которая изначально была в сорок раз массивнее Солнца, может все еще оставаться нейтронной звездой.

Тут следует отметить, что граница между прародителями, формирующими нейтронные звезды, и черными дырами, нечеткая; все зависит от множества факторов, а не только от массы прародителя – например, большое значение имеет вращение звезд.

Но черные дыры действительно существуют – это не плод воспаленного воображения сумасшедших ученых и фантастов, – и это невероятно. Черные дыры связаны с рентгеновской Вселенной – и я к ним еще вернусь, обещаю. Сейчас просто скажу, что черные дыры не только реальны, но и, по всей вероятности, составляют ядро всех достаточно массивных галактик во Вселенной.

Однако вернемся к коллапсу ядра. Как только нейтронная звезда сформировалась – помните, что мы говорим о миллисекундах, – звездное вещество, до этого пытавшееся проникнуть в нее с огромной скоростью, буквально отскакивает, образуя направленную наружу ударную волну, которая со временем ослабляется из-за энергии, потребляемой распадающимися оставшимися ядрами железа. (Помните, что, когда легкие элементы сливаются, формируя ядро железа, энергия высвобождается, а его распад потребляет энергию.) Когда электроны и протоны сливаются друг с другом во время коллапса ядра и становятся нейтронами, формируются также нейтрино. Кроме того, при высокой температуре ядра, около 100 миллиардов кельвинов, образуются так называемые термические нейтрино, переносящие примерно 99 процентов (что составляет около 1046 джоулей) всей энергии, вырабатываемой в результате коллапса ядра. Оставшийся один процент (1044 джоулей) представлен в основном кинетической энергией извергнутого звездного вещества.

Практически не имеющие массы и нейтральные нейтрино обычно легко проходят через любое вещество, и большинство из них покидают ядро. Тем не менее из-за чрезвычайно высокой плотности окружающего вещества они передают около одного процента своей энергии материи, которая затем вырывается наружу со скоростью до 20 тысяч километров в секунду. Часть этой материи может быть видна в течение тысячелетий после взрыва; мы называем это остатками сверхновой (пример – Крабовидная туманность).

Вспышка сверхновой ослепительна: оптическая светимость при максимальной яркости составляет около 1035 джоулей в секунду. Это в 300 миллионов раз больше светимости Солнца. Когда такая сверхновая встречается в нашей Галактике (что в среднем происходит всего пару раз за сто лет), мы наблюдаем одну из самых впечатляющих картин в небе. В настоящее время благодаря полностью автоматизированным роботизированным телескопам астрономы каждый год обнаруживают в большом «зоопарке» относительно близких к нам галактик сотни и тысячи сверхновых.

Коллапсирующее ядро сверхновой выделяет в 200 раз больше энергии, чем наше Солнце выработало за последние пять миллиардов лет, и вся она высвобождается примерно за одну секунду, причем 99 процентов – в виде нейтрино!

Именно это произошло в 1054 году, и в результате на небе появилась самая яркая звезда за последние тысячу лет – настолько яркая, что ее на протяжении нескольких недель было видно даже в дневное время. Будучи просто краткой космической вспышкой в межзвездном пространстве, сверхновая за несколько лет исчезает – по мере того как газ охлаждается и рассеивается. Но сам газ не исчезает. Взрыв в 1054 году создал не только одиночную нейтронную звезду, но и Крабовидную туманность, один из самых замечательных и до сих пор меняющихся объектов на небе и практически неисчерпаемый источник новых данных, потрясающих изображений и экспериментальных открытий. В астрономии многое происходит в масштабах времени, которые более привычны нам в связи с геологией – это миллионы и миллиарды лет, – поэтому, когда астрономы обнаруживают нечто происходящее очень быстро, за секунды, минуты или даже годы, это впечатляет особенно сильно. Отдельные части Крабовидной туманности меняют форму каждые несколько дней; кроме того, и космический телескоп «Хаббл», и Космическая рентгеновская обсерватория «Чандра» обнаружили, что остаток Сверхновой 1987А (находится в Большом Магеллановом Облаке) также изменяет свою форму с такой скоростью, что мы можем непосредственно наблюдать этот процесс.