Как научить ребенка легко учиться - Уиллис Джуди. Страница 46
Чтобы помочь сохранить природную любознательность ребенка, задавайте ему различные вопросы, касающиеся математики. Чем сосредоточеннее ребенок, тем выше его способность делать более точные предположения относительно новой информации. Это, в свою очередь, формирует основу для понимания более сложных математических действий и концепций.
Если вы понаблюдаете за детьми в общественных местах, скажем в аэропорту или музее, то обязательно заметите двух-трех малышей, которые, словно бегуны на короткую дистанцию, через все помещение несутся туда, где находится интересующий их предмет. Родители, следуя за детьми и не препятствуя их исследованиям, стимулируют их стремление к познанию мира, что, в свою очередь, способствует развитию творческого мышления. Ведь, препятствуя детям в исследовании окружающего мира, взрослые ограничивают их развитие.
В процессе чтения книг, общения с вами, с ровесниками и учителями у ребенка формируется понимание окружающего мира. Вопросы, касающиеся математики, стимулируют любопытство ребенка, поэтому чем больше усилий вы будете прилагать для того, чтобы подстегнуть его интерес к математике и другим наукам, тем с большим энтузиазмом он будет относиться к учебе.
Исследование окружающего мира
Приведенные ниже рекомендации можно адаптировать к интересам и уровню развития вашего ребенка. Представленные здесь упражнения постепенно усложняются. Первые задания предназначены для детей с достаточно развитым представлением о числах, следующую группу представляют упражнения для детей с более высоким уровнем развития концептуального мышления (обычно для учеников младших классов средней школы). Однако даже если ваш ребенок совсем мал, вы все равно можете бегло пролистать эти задания, поскольку, возможно, сумеете откорректировать приведенные здесь варианты с учетом соответствующего уровня развития его математических способностей.
Двери и окна
Этот процесс познания дома может начаться с вопроса, который пробудит любопытство ребенка. В результате он соберет какие-то данные, которые можно проанализировать, используя математические знания и навыки.
К примеру, двери и окна – прекрасные объекты для исследования, поскольку их легко сосчитать, а также использовать для разных новых открытий.
Заведите разговор о каком-либо из этих объектов. Вы можете пробудить у ребенка интерес, спросив, сколько, по его мнению, дверей и окон в вашем доме. Узнайте, на чем он строит свои предположения. Выясните, как можно найти ответ на этот вопрос. Если ребенок затрудняется с ответом, помогите ему. Возможно, ребенок захочет прикрепить на каждую дверь и окно листок с номером, а потом подсчитать количество всех дверей и окон.
Что же касается всего дома, то, если ребенок принадлежит к ВПК-типу, он, скорее всего, начнет с осмотра дома, нарисует общий план, а уже потом будет добавлять разные детали, собранные в процессе исследования каждой комнаты. Если же он принадлежит к более методичному АЛ-типу, то, возможно, выберет другой способ: обойдет все комнаты последовательно, переходя из одной в другую, собирая данные, а уже потом сведет их воедино для проведения анализа. Посмотрите, с чего начнет эту работу ваш ребенок, или предложите ему несколько вариантов на выбор.
После того как будут собраны все данные, спросите у ребенка, в какой форме лучше представить информацию, чтобы определить количество дверей и окон. Если для этого он будет использовать на плане какие-нибудь цифры или символы, у него будет развиваться «чувство чисел» и формироваться понимание того, насколько математика упрощает процесс исследования. Даже если ребенок считает математику трудной дисциплиной, он не сможет не признать, что дверь легче представить как цифру или птичку в столбике. Это и будет для него достоверным доказательством того, что данная дисциплина упрощает решение многих задач. Чтобы помочь ребенку это понять, задайте ему вопрос: «Почему ты используешь цифры (или символы), вместо того чтобы нарисовать двери?»
На форму изложения данных оказывают влияние заинтересованность и уровень развития математических способностей ребенка. Например, он может использовать график с двумя осями, на одной из которых будет указано название комнат, а на другой – количество окон или дверей в них, которое можно обозначить с помощью пуговиц. Другие варианты включают составление схем, на которых показано расположение в комнатах окон и дверей. Ребенку АЛ-типа, наверное, понравится разъяснять членам семьи, какие данные скрываются за его художествами.
Задача собрать и обобщить данные будет побуждать ребенка размышлять над тем, что может означать полученная им информация. Почему в одних комнатах больше дверей или окон, чем в других? Если ребенок предпочитает сначала сделать общий обзор, а уже затем приступать к деталям (так обычно делают ученики ВПК-типа), то он может выдвинуть несколько гипотез прежде, чем начать анализировать их по отдельности. Возможно, ребенок решит собрать побольше данных, осматривая окна снаружи дома. А вот ученик АЛ-типа, пожалуй, предпочтет просмотреть уже собранные данные по нескольким комнатам и на основании этого предположить, сколько дверей и окон будет в комнатах, которые он еще только собирается исследовать. Затем ребенок может проверить свое предположение и выяснить, является ли его теория правильной.
Расширение сферы деятельности
После проведенного исследования попросите ребенка подытожить полученную информацию: отметить, что его удивило; подумать, насколько его предположения соответствовали конечным результатам; что еще он хотел бы узнать и какой частью своего исследования доволен больше всего. Придерживаясь стратегии математической последовательности (сначала получение исходных данных, затем распределение и, наконец, выводы), ребенок получает прекрасную возможность по прошествии определенного времени оглянуться назад и посмотреть, какой прогресс он совершил в понимании математики. Через несколько лет он мог бы уже поделиться некоторыми своими стратегиями с одноклассниками, друзьями либо младшим братом или сестрой.
Для закрепления этих действий в памяти внесите в дневник ребенка фотографии и результаты его исследований. Помимо дверей и окон, ребенок может сравнивать различные бытовые приборы во всех комнатах.
Киты как средство для сопоставления пропорций и масштабов
Чтобы исследовать понятие «пропорция», заинтересуйте ребенка, предложив сравнить, к примеру, размеры его любимых животных. Поскольку киты являются самыми большими из живущих на Земле существ, их удобно брать для сравнения, но ваш ребенок может выбрать и что-нибудь другое: корабли, самолеты или динозавров.
Вот вопросы, которые могли бы послужить исходной точкой для данного исследования:
• Можно ли поселить кита в твоей комнате?
• Насколько большим может быть самый огромный кит?
• Как показать, насколько длина кита больше твоего роста?
• Сколько места на стене твоей комнаты понадобилось бы, чтобы нарисовать такого кита?
После небольшого обсуждения, направленного на генерацию идей, вы можете продолжать подталкивать ребенка, задавая конкретные вопросы типа:
• Кита какого вида ты будешь рисовать?
• Какой будет длина твоего кита в сантиметрах?
• Какого размера должен быть лист бумаги для твоего рисунка?
• Какого размера должен быть кит, чтобы уместиться на этом листе? Какой масштаб нужно выбрать?
Попробуйте сделать вместе кое-какие вычисления. Если ребенок хочет изобразить 12-метрового кита, используя 5 сантиметров бумаги на каждые 30 сантиметров длины кита и каждые 30 сантиметров его собственного роста, то сколько сантиметров составит длина нарисованного кита и сколько – высота изображения ребенка? Уместится ли рисунок кита на бумаге? Если нет, то какой масштаб нужно использовать? Если ребенок предположит, что подойдет 2,5 сантиметра к 30 сантиметрам, и если вы найдете лист бумаги длиной 100 сантиметров, помогите ему определить, бумага какого размера нужна, чтобы представить в том же масштабе его собственное изображение, к примеру 120 сантиметров.