Тайна жизни: Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК - Маркел Ховард. Страница 24
Затем Кори перешел в Национальный институт здоровья в Вашингтоне (округ Колумбия), где получил грант на один год, по окончании которого обратился к Полингу с просьбой взять его в Калифорнийский технологический институт. Он так стремился к научной деятельности, что предложил привезти собственное оборудование и не получать заработок. Полинг согласился, и Кори стал научным сотрудником его лаборатории без оплаты, но ценность была не в деньгах. Хотя помимо работы они не сблизились, Полинг всячески способствовал карьере Кори и неоднократно, хотя и безуспешно номинировал его на Нобелевскую премию. Под руководством Полинга Кори неуклонно рос в академической иерархии и в 1949 г. стал профессором. Друг Кори, химик Ричард Марш, также занимавшийся рентгеновской кристаллографией, характеризовал его как замкнутого человека: «Не любит никакие общественные мероприятия и предпочитает сидеть дома с женой, слушая Гилберта и Салливана или, скажем, ухаживая за газоном». По словам Марша, Кори был полной противоположностью Полинга, который любил быть в центре внимания. Полинг умел читать лекции столь завораживающе и увлекательно, что слушатели казались опоенными колдовским зельем. А тем временем выходила тщательно написанная статья с убедительными данными, полученными Кори, сутью которого были скрупулезность и внимательность {272}.
Этот необычный тандем трудился над разгадкой структуры аминокислот слаженно и словно без заметных усилий. Кори занялся структурой простейшей аминокислоты – глицина. После того как он корректно описал каждый атом этой структуры, Полинг поручил ему дипептид из двух остатков глицина – 2,5-дикетопиперазин, и далее они продолжали увеличивать сложность молекулы, пока не получили данные, необходимые для изучения полипептидов. Цель состояла в том, чтобы установить расположение каждого атома в белковой молекуле, используя длины и углы связей в более простых молекулах, путем дедукции, моделирования и сравнения моделей с наблюдаемыми параметрами реальных белков.
В 1948/49 академическом году Полинг был истмановским профессором Баллиол-колледжа Оксфордского университета. Эта должность [31], учрежденная Джорджем Истманом, создавшим компанию Eastman Kodak, в те годы считалась одной из самых уважаемых профессур в мире {273}. В это время в центре внимания британских специалистов по рентгеновской кристаллографии оказался комплект поразительно четких дифракционных рентгенограмм кератина, полученных Уильямом Астбери и его группой в Лидсском университете. По оценке Астбери, полипептидная цепь кератина резко изгибалась каждые 510 пикометров, словно зигзагообразная лента. Однако другие исследователи интерпретировали эти результаты иначе – как структуру типа пружины или спирали. Одним из приверженцев спиральной структуры был Фрэнсис Крик. Он критиковал модель Астбери, считая, что тот недостаточно скрупулезно относится к учету расстояний и углов. По мнению Крика, «любая цепочка из одинаковых повторяющихся звеньев, устроенная так, что все звенья складываются одним и тем же образом и одинаково соотносятся с ближайшими соседями, образует спираль» {274}. И в зигзагообразной модели Астбери, и в спиральной модели Полинга смущало то, что не удается объяснить, как составляющие молекулу белка аминокислоты образуют повтор через каждые 510 пикометров и имеют жесткие химические связи.
Промозглой зимой в Оксфорде Полинг расколол этот крепкий орешек – додумался, как устроены белки. Позднее он объяснил свое необычное открытие обычной простудой (которую, как он стал считать впоследствии, можно вылечить ударными дозами витамина С) {275}. Простуда переросла в синусит, обрекший его на заключение в четырех стенах «негодной» квартиры, предоставленной ему как истмановскому профессору. «В первые пару дней, – вспоминал Полинг, – я читал детективы и просто старался не хандрить, но заскучал и подумал: почему бы не поразмыслить о структуре белков?» {276} Он встал с кровати, взял бумагу и карандаш и начал рисовать различные возможные структуры. Полинг пришел к мысли, что в белковой молекуле необходим своего рода скелет, опорная конструкция для химических группировок, определяющих биологическую активность данного белка. Он принялся складывать лист бумаги в разные формы: тетраэдр, телескопическую трубку и, наконец, после многократных попыток и поисков, в узнаваемую, хотя и несовершенную спиральную модель. Десятилетия спустя Полинг отметил: «Я тогда и думать забыл о простуде, так увлекся» {277}. Однако поначалу ему не удалось сообразить, как заложить в модель расстояние между двумя соседними изгибами цепочки в точном соответствии с интервалом в 510 пикометров, установленным Астбери по рентгенограммам. На это ушло еще три года кропотливой работы. Задержка объяснялась не только ограничениями имевшихся в распоряжении Полинга лабораторных методов, но и необходимостью отвлекаться на организационную деятельность, обучение сотрудников, разработку новых экспериментов, написание статей и чтение лекций.
Полинг, помимо описанной выше магистральной линии, вел исследования и в других направлениях. Так, он показал, что серповидноклеточная анемия имеет причины на молекулярном уровне. Применив метод электрофореза, Полинг с коллегами продемонстрировали, что малое изменение электрического заряда гемоглобина из-за замены всего одной аминокислоты на другую в составе этого белка вызывает клиническую картину, печально известную больным серповидноклеточной анемией и их лечащим врачам. Теперь известно, что эта аминокислотная замена обусловлена точечной мутацией, то есть заменой одного нуклеотида в гене, который кодирует β-цепь гемоглобина, расположен в 11-й хромосоме и наследуется по аутосомно-рецессивному типу. Гемоглобин с измененным электрическим зарядом аномален: его молекулы собираются в длинные тяжи, из-за чего эритроциты приобретают серповидную форму и преждевременно разрушаются; поврежденные клетки слипаются и прилипают к стенкам кровеносных сосудов, блокируя ток крови, что вызывает сильные боли вплоть до тяжелого состояния, называемого вазоокклюзивным кризом {278}. Открытие Полинга не только явилось существенным достижением в химии белков, но и положило начало пониманию причин заболеваний на молекулярном уровне. А в 1968 г. Полинг опозорил свое имя чудовищной евгенической идеей – препятствовать носителям гена серповидноклеточной анемии и больным этой болезнью иметь детей: «Нужно делать им в молодости татуировку на лбу, свидетельствующую о присутствии гена серповидноклеточной анемии, чтобы носители дефекта не вступали в связь друг с другом» {279}.
Полинг был не единственным крупным ученым, рассчитывавшим покончить с загадкой белка. Уильям Лоуренс Брэгг и его сотрудники Макс Перуц и Джон Кендрю в Кавендишской лаборатории Кембриджского университета немало лет упорно, но почти безрезультатно бились над структурой сложных белков. В отличие от Полинга, который шел от компонентов белков, групп атомов, затем аминокислотных остатков к предсказательной модели общей структуры и затем сравнивал ее с рентгенограммами, группа Брэгга начала с анализа рентгенограмм цельных белковых молекул, то есть взялась за задачу с другого конца. Это была настолько муторная работа, что Макс Перуц жаловался: «Множество ночей сна урывками, труднейшие измерения интенсивности тысяч рефлексов до черных точек в глазах нисколько не приблизили меня к разгадке строения гемоглобина, и я потратил часть лучших лет своей жизни на попытки решения задачи, которая представлялась неразрешимой» {280}. Несмотря на разочарование, к 1950 г. Брэгг, Кендрю и Перуц сочли, что собрали достаточно данных, чтобы оспорить мнение Полинга, и в октябрьском номере журнала Proceedings of the Royal Society of London опубликовали статью «Конфигурации полипептидной цепи в кристаллизованных белках» {281}. Полинг, как только номер оказался у него в руках, к своей радости, увидел, что Брэгг и его коллеги вовсе не решили головоломку. Они лишь рассмотрели все предполагаемые варианты структуры полипептидной цепи и, исчерпав этот список, присоединились к ошибочной гипотезе Астбери, согласно которой волокна кератина имеют форму складчатой изгибающейся ленты.