Четыре возраста человека. Системная психология - Рыжов Борис. Страница 5
Таким образом, система Гегеля завершила развитие науки в рамках философской традиции. Создание этой системы, так же как и системы Аристотеля в Aнтичности, не только стало вершиной развития мысли в русле философской традиции, но и закономерно обусловило последующий спад в ней рационалистических идей и расцвет иррационалистической философии. Однако важнейшим следствием завершения эпохи рационалистической философии стал перенос акцентов в область позитивных, конкретно-научных исследований.
Создание всеобъемлющей философской системы оказало очевидное влияние на все дальнейшее развитие психологической мысли, не только определяя ее предмет и основные задачи, но и указывая логику связи с другими дисциплинами. Следует отметить и то, что систематическая форма изложения Гегелем своего учения стала для многих исследователей образцом для организации многих конкретных наук.
Вместе с тем закончилась целая эпоха в истории европейской цивилизации. Теперь предстояли грандиозные перемены не только в культурной жизни, но и смена самих основ прежнего мировоззрения, а следовательно, и отказ от многих прежних принципов мышления в области политики и искусства, науки и экономики. Еще при жизни Гегеля мир захлестывает волна социальных потрясений – революций и Hаполеоновских войн, сметающих большинство пережитков предшествующей эпохи. Крепостное право и ничем не ограниченная монархия начинают осознаваться анахронизмом на всем протяжении европейского пространства от Гибралтара до Урала. Идея свободы, права на независимое мнение становится ключевым принципом жизни Европы в XIX веке, в полной мере определяя и направление научного мышления.
На смену венчающему гегелевскую философию тезису о системном единстве мира неизбежно должен был выступить антитезис независимости познания мира самостоятельными, позитивными науками. (Уже при жизни Гегеля с предложением о преобразовании психологии в такую науку на базе использования математики выступил его соотечественник И. Ф. Гербарт [8], ставший после смерти Гегеля формальным претендентом на занятие его кафедры в Берлинском университете.) Тем не менее дальше, следуя той же логике Гегеля, должна наступить эпоха синтеза наук и их объединение в новую суперсистему позитивного знания.
1.2 Психофизика и термодинамика
В середине XIX века почти одновременно произошло рождение двух весьма далеких друг от друга и казавшихся сугубо специальными научных дисциплин, сыгравших тем не менее одинаково большую роль в становлении современных взглядов на природу человека и Вселенной.
Одной из этих дисциплин была психофизика – наука о соотношении физического стимула и вызываемого им ощущения, ставшая одним из главных источников новой экспериментальной психологии. Еще в 1834 г. профессор физиологии Лейпцигского университета Эрнст Вебер опубликовал работу, посвященную определению порогов кожной и тактильной чувствительности. В ней он утверждал, что добавочный раздражитель должен находиться в постоянном для каждой модальности отношении к исходному раздражителю, чтобы возникло едва заметное различие в ощущениях. Позднее к этой проблеме обратился коллега Вебера по университету физик Густав Фехнер [5], который предложил математическую интерпретацию установленной Вебером зависимости, назвав ее законом Вебера. В дальнейшем Фехнер получил логарифмическую зависимость величины ощущения от величины исходного раздражителя, дав этому закону свое имя.
Следует отметить, что существование логарифмической зависимости ощущений от вызывающих их изменений внешнего мира отмечалась многими исследователями задолго до Фехнера. Можно сослаться на «формулу счастья», выведенную в 1738 г. знаменитым швейцарским математиком и естествоиспытателем Даниилом Бернулли (1700–1782). Счастье Бернулли понимал как отношение прибыли к величине всего располагаемого человеком богатства. Однако ни «формула счастья» Бернулли, ни работы французского оптика Пьера Бугера (1698–1758), предложившего похожую зависимость при измерении яркости света, не произвели научной сенсации. В отличие от этого публикация Фехнером в 1860 г. книги «Элементы психофизики», содержавшей подробное описание открытого им закона, произвело эффект разорвавшейся бомбы: восприятие человека можно не только измерять количественно, но оно подчиняется строгому математическому закону.
Другой новой научной дисциплиной, сыгравшей первостепенную роль в развитии представлений о системной сущности всех явлений в мире, стала термодинамика – раздел физики, изучающий соотношение теплоты и других форм энергии. В ее русле анализ системных явлений приобретает современный категориальный аппарат и устанавливаются важнейшие законы существования систем. Говоря о роли термодинамики в развитии системных исследований, один из наиболее известных теоретиков науки второй половины нашего века И. Пригожин подчеркивает, что с позиций классической науки четко разграничивалось то, что считалось простым, и то, что приходилось рассматривать как сложное. Никаких сомнений, например, не вызывала «простота» ньютоновских законов движения, идеального газа, химических реакций. Точно так же казалась очевидной «сложность» биологических процессов и тем более человеческой деятельности в том виде, в каком она отображается в экономическом знании или городском планировании. «Можно утверждать, – продолжает он, – что в области физики и химии первой дисциплиной, столкнувшейся с проблемой сложности, была термодинамика» [14].
Ее основной закон – так называемое второе начало, – гласящий, что в изолированных системах энтропия возрастает, стал одновременно и основным принципом философского понимания развития мира. Значение термодинамики для развития фундаментальной науки о системах оказывается столь велико, что необходимо хотя бы кратко остановиться на истории ее развития.
Становление термодинамики как самостоятельной науки связывают с деятельностью французского военного инженера Сади Карно. Его единственное опубликованное сочинение «Размышление о движущей силе огня» вышло в 1824 г. В этом небольшом произведении (всего 43 страницы) Карно сформулировал основные принципы новой науки, термодинамики, окончательно сформировавшейся три десятилетия спустя. И более того: Карно первым высказал идеи, легшие в основу так называемого «второго начала термодинамики» – одного из наиболее фундаментальных общесистемных положений, указывающих направление процессов развития видимой нами части Вселенной [6]. «Движущая сила, – говорит Карно, – существует в природе в неизменном количестве, она никогда не создается и не уничтожается, но меняет форму и вызывает то один род движения, то другой…» [23].
Идеи Карно были развиты Г. Гельмгольцем в 1847 г. в его работе «О сохранении силы» [23]. В ней Гельмгольц впервые дал математическое обоснование закона сохранения энергии и, проанализировав большинство известных в то время физических явлений, показал всеобщность этого закона. В частности, он указал, что происходящие в живых организмах процессы также подчиняются закону сохранения энергии. Утверждение Гельмгольца вступало в явное противоречие с бытовавшей в то время концепцией существования особой «живой силы», якобы управляющей организмами.
Гельмгольц также впервые доказал применимость принципа наименьшего действия, согласно которому для данного класса сравниваемых друг с другом движений системы действительным является то, для которого физическая величина, называемая действием, имеет минимум, к тепловым, электромагнитным и оптическим явлениям. В конечном счете он распространил его и на процессы, происходящие в живых организмах.
Но в полной мере идеи Карно были восприняты только в начале второй половины XIX века, когда благодаря работам Рудольфа Клаузиуса произошло окончательное формирование науки термодинамики. Одна из величайших заслуг Клаузиуса состоит в том, что он впервые ввел понятие S – функции, или энтропии как количественной меры неупорядоченности состояния системы. (Согласно введенной им зависимости, изменение энтропии dS соответствует отношению поглощаемого системой тепла dQ и абсолютной температуры этой системы Т.) Для простых систем, типа идеального газа, он устанавливает зависимость: