Квантовое превосходство: Революция в вычислениях, которая изменит всё - Каку Митио. Страница 3

Фармацевтические компании также внимательно следят за всеми нововведениями в этой области, понимая, что квантовые компьютеры, возможно, будут способны моделировать сложные химические и биологические процессы, выходящие далеко за рамки возможностей цифровых компьютеров. Не исключено, что громадные мощности, задействованные в испытаниях миллионов лекарств, когда-нибудь сменятся «виртуальными лабораториями», которые будут испытывать лекарства в киберпространстве. Были опасения, что все это однажды заменит химиков и сделает их ненужными. Но Дерек Лоу, ведущий блог о разработке новых лекарств, замечает: «Речь не о том, что машины заменят химиков. Речь о том, что химики, которые используют машины, заменят тех, кто этого не делает» {6}.

Даже Большой адронный коллайдер возле Женевы в Швейцарии, крупнейшая научная установка в мире, сталкивающая между собой протоны с энергией 14 трлн электронвольт, чтобы воссоздать условия, существовавшие в ранней Вселенной, теперь использует квантовые компьютеры для просеивания громадных массивов данных. За одну секунду они способны проанализировать до триллиона байт информации, сгенерированной примерно миллиардом столкновений частиц. Возможно, когда-нибудь квантовые компьютеры сумеют разгадать тайну рождения Вселенной.

Квантовое превосходство

Еще в 2012 г., когда физик Джон Прескилл из Калифорнийского технологического института впервые ввел в обращение термин «квантовое превосходство», многие ученые покачали головами. Пройдут десятилетия, если не столетия, подумали они, прежде чем квантовые компьютеры смогут обогнать по производительности цифровой компьютер. В конце концов, вычисления на отдельных атомах, а не на пластинах кремниевых микросхем считались чертовски сложными. Малейшая вибрация или шум может нарушить изящный танец атомов в квантовом компьютере. Но сегодня поразительные заявления о новых достижениях в квантовом превосходстве в клочья рвут мрачные предсказания скептиков. Теперь основное внимание смещается к вопросу о том, насколько быстро будет развиваться эта область.

Толчки, вызванные этими замечательными достижениями, прочувствовали также руководства государственных организаций и секретные разведывательные службы по всему миру. Документы, опубликованные анонимными разоблачителями, показали, что ЦРУ и Агентство национальной безопасности США внимательно отслеживают все происходящее в этой области. Дело в том, что мощность квантовых компьютеров настолько велика, что, в принципе, они способны взломать все известные кибершифры. Это означает, что секреты, тщательно охраняемые правительствами, – особая ценность, поскольку это самая чувствительная информация, – будут уязвимы перед такими кибератаками, как и самые строгие секреты корпораций и даже отдельных людей. Ситуация требует настолько особого внимания, что даже Национальный институт стандартов и технологий США (NIST), определяющий национальную политику и стандарты, недавно выпустил инструкцию, призванную помочь крупным корпорациям и агентствам спланировать неизбежный переход в новую эпоху. NIST уже объявил, что, по его прогнозам, к 2029 г. квантовые компьютеры смогут взломать 128-битное AES-шифрование – шифр, которым пользуются многие компании.

Али Эль-Каафарани, журналист Forbes, отмечает: «Это весьма пугающая перспектива для любой организации, которая хочет защитить какую бы то ни было чувствительную информацию» {7}.

Китайцы потратили 10 млрд долларов на свою Национальную лабораторию квантовой информатики, поскольку твердо настроены стать лидером в этой жизненно важной и стремительно развивающейся области. Государства тратят десятки миллиардов, чтобы усилить охрану своих шифров. Вооружившись квантовым компьютером, условный хакер мог бы, по идее, взломать любой цифровой компьютер на планете, таким образом внося хаос в целые отрасли и даже в вооруженные силы. Вся чувствительная информация может стать доступной любому, кто предложит за нее больше других. Финансовые рынки также могут быть ввергнуты в кризис, если квантовые компьютеры вломятся в святая святых Уолл-стрит. Кроме того, квантовые компьютеры могли бы разомкнуть блокчейн, создавая хаос и на рынке биткойна. По оценкам Deloitte, около 25 % биткойнов потенциально уязвимы для взлома при помощи квантового компьютера.

«Текущие проекты на базе блокчейна, скорее всего, внимательно и нервно следят за продвижением квантовых вычислений» {8}, – делается вывод в докладе CB Insights, ИТ-компании, занятой созданием ПО для обработки данных.

Так что на кону стоит ни много ни мало мировая экономика, неразрывно связанная с цифровыми технологиями. При помощи компьютеров банки Уолл-стрит отслеживают многомиллиардные долларовые транзакции. При помощи компьютеров инженеры проектируют небоскребы, мосты и ракеты. Художникам не обойтись без компьютеров при анимации голливудских блокбастеров. Фармацевтические компании пользуются компьютерами при разработке очередных чудо-лекарств. Дети прибегают к компьютерам, чтобы поиграть с друзьями в новейшие видеоигры. И все мы в решающей степени зависим от сотовых телефонов, когда получаем мгновенно через них новости от наших друзей, знакомых и родственников. Каждому приходилось испытывать приступ паники, когда не можешь найти свой сотовый. В общем, чрезвычайно трудно назвать хотя бы какую-то область человеческой деятельности, в которой компьютеры определяют буквально все. Мы настолько от них зависимы, что, если бы вдруг все компьютеры в мире внезапно прекратили работать, цивилизация погрузилась бы в хаос. Вот почему ученые следят за развитием квантовых компьютеров так внимательно.

Конец закона мура

Что движет всей этой суетой и спорами?

Резкий скачок квантовых технологий – признак того, что эра кремния потихоньку подходит к концу. На протяжении полувека взрывной рост мощности компьютеров описывался законом Мура, получившим свое название по имени основателя Intel Гордона Мура. Закон Мура гласит, что мощность компьютеров удваивается каждые полтора года. Этот обманчиво простой закон описывает замечательный экспоненциальный рост мощности компьютеров, не имевший прецедентов в истории человечества. Никакое другое изобретение не оказало подобного всеохватного влияния за такой короткий промежуток времени.

Компьютеры на протяжении своей истории прошли множество этапов развития, всякий раз многократно повышая свою мощность и вызывая серьезные социальные изменения. Если разобраться, то закон Мура можно распространить и на прошлое, вплоть до XIX в., до эпохи механических вычислителей. В то время инженеры для простых арифметических операций использовали вращающиеся цилиндры, штырьки, шестеренки, колесики. К началу прошлого века в этих вычислителях начали использовать электричество, заменяя шестеренки на реле и кабели. Во время Второй мировой войны компьютеры использовали целые батареи вакуумных электронных ламп, чтобы взламывать секретные правительственные шифры. В послевоенную эпоху произошел переход с радиоламп на транзисторы, которые можно было уменьшать до микроскопических размеров, что способствовало дальнейшему повышению скорости и мощности компьютеров.

В 1950-е гг. универсальные вычислительные машины были доступны лишь крупным корпорациям, правительственным агентствам вроде Пентагона и международным банкам. Они были мощными (так, ENIAC способен был за 30 секунд посчитать то, что потребовало бы от человека 20 часов работы). Но при этом они были дорогими, громоздкими и часто занимали целый этаж офисного здания. Появление микросхем произвело настоящую революцию в производстве компьютеров. За прошедшие десятилетия микросхемы настолько уменьшились в размерах, что средний чип размером с ноготь может теперь содержать в себе около миллиарда транзисторов. Сегодня сотовый телефон, на котором ребенок играет в видеоигры, оказывается мощнее целого зала неуклюжих «динозавров», которыми когда-то пользовался Пентагон. Компьютер у нас в кармане превосходит по мощности компьютеры, применявшиеся во время холодной войны, и мы воспринимаем этот факт как нечто само собой разумеющееся.