Wi-Fi: Все, что Вы хотели знать, но боялись спросить - Щербаков А. К.. Страница 46
Любая антенна выполняет две основные функции. Работая на приём, она преобразует электромагнитную волну в электрический сигнал. Последний затем обрабатывается беспроводным устройством, в результате чего получаются цифровые данные. При передаче информации антенна преобразует электрический сигнал в электромагнитную волну, которая излучается в окружающее пространство. Для передачи потоков данных по радиоволнам используются сложные схемы модуляции.
От того, как хорошо антенна осуществляет эти функции, зависят возможность подключения пользователей к БЛВС и скорость передачи данных. Если антенна не будет излучать радиоволны должным образом, интерфейсы БЛВС (адаптируясь к низкому уровню сигнала) снизят свои максимальные скоро-сти передачи, что приведёт к уменьшению производительности сети. Подходящая антенна должна обеспечивать требуемое радиопокрытие и минимизировать уровень сигналов БЛВС, выходящих за пределы обслуживаемого здания.
Итак, рассмотрим параметры антенн. В качестве базы для сравнения способности разрабатываемых антенн усиливать радиосигнал радиоинженеры используют гипотетический изотропный излучатель. Он излучает радиосигнал равномерно по всем направлениям, поэтому его диаграмма направленности (ДН) имеет вид сферы.
Коэффициент усиления (КУ) такой антенны равен 0 дБ, а КУ любой другой антенны выражают в децибелах относительно изотропного излучателя.
ДН антенны может быть представлена в виде трехмерного изображения или как два двухмерных графика. Самым распространённым типом антенн в БЛВС является всенаправленный диполь. Такими антеннами оснащены многие точки доступа. Будучи ориентированным перпендикулярно поверхности земли, в азимутальной плоскости диполь излучает сигнал равномерно по всем направлениям, а его ДН в этой плоскости (при использовании полярных координат) имеет форму окружности, в центре которой находится сам диполь. При этом предполагается, что она установлена перпендикулярно поверхности земли. В отличие от сферической ДН изотропного излучателя ДН этой антенны как бы растянута в азимутальной плоскости, т. е. большую часть энергии радиоволн она излучает по горизонтали, что, собственно, и обеспечивает её более высокий КУ (2,2 дБ) по сравнению с КУ изотропного излучателя. Увеличение КУ антенны способствует росту дальности действия радиосистемы. Оснащённая антенной с такой ДН точка доступа обеспечит радиопокрытие большого помещения, при этом уровень её излучения на соседних этажах здания будет низким. Если же антенну ориентировать горизонтально, то излучаемый ею сигнал будет распространяться и между этажами. При каждом увеличении КУ антенны на 3 дБ уровень принимаемого ею сигнала удваивается.
Специалисты конструируют и остронаправленные антенны, которые фокусируют электромагнитную энергию в узкий луч. К таким антеннам относятся большие параболические антенны, с помощью которых организуют наземные радиолинии длиной до 40 км и более. Названные антенны имеют КУ до 25 дБ и выше.
Для оптимизации радиопокрытия к точкам доступа нередко подключают внешние антенны. Возможность их подключения имеется во многих точках доступа, предназначенных для корпоративных сетей. Однако Федеральная комиссия по связи США запрещает применение внешних антенн с устройствами, работающими в некоторых частотных полосах диапазона частот 5 ГГц. Поэтому работающие в этих полосах точки доступа вам придётся использовать с имеющимися у них антеннами.
Ведущие производители точек доступа, такие, как компании Cisco Systems, Proxim и Symbol Technologies, предлагают несколько видов антенн для своих продуктов. Другие же производители, включая большинство компаний, недавно вышедших на рынок БЛВС со своими беспроводными коммутаторами, оснащают свои точки доступа фиксированными всенаправленными антеннами. Точка доступа компании Airespace поддерживает внешние антенны и работает с интегрированной направленной пластинчатой антенной, что обеспечивает большую дальность действия, чем конкурирующие продукты.
Ноутбуки оснащают беспроводными сетевыми адаптерами PC Card или Mini-PCI. Первые имеют простую всенаправленную антенну. В корпусе ноутбука такой адаптер расположен горизонтально, и, как правило, так же ориентирована его антенна, которая в основном излучает вверх и вниз, а не по сторонам, что уменьшает дальность связи. Стоит отметить адаптер FriendlyNET AL1511 фирмы Asante, оснащённый выдвижными антеннами Xwing. Это устройство обладает самой большой дальностью связи. Оно не самое прочное, но его вертикально ориентированные антенны работают хорошо, помогая обеспечить надёжную связь в тех случаях, когда компьютер находится на границе зоны действия сети. Некоторые 2,4-ГГц беспроводные сетевые адаптеры имеют гнездо для подключения внешней антенны.
Беспроводной сетевой адаптер Mini-PCI обычно работает с расположенной в ноутбуке антенной. Как правило, эти антенны — двухдиапа-зонные, т.е. имеют элементы, функционирующие в диапазонах частот 2,4 и 5 ГГц. Антенну лучше всего размещать по периметру дисплея ноутбука, но тогда для связи её с беспроводным сетевым адаптером потребуется использовать кабель, в котором радиосигнал будет затухать (потери в антенном кабеле ноутбука составляют 3 дБ и более). Поэтому многие производители размещают антенну рядом с адаптером Mini-PCI, который расположен под клавиатурой ноутбука. К сожалению, при такой компоновке антенна этого адаптера работает хуже, чем антенна платы PC Card.
Хорошей новостью для пользователей БЛВС является то, что антенны устройств этих сетей становятся «интеллектуальнее» и эффективнее в работе.
Простейшие «интеллектуальные» антенны, предназначенные для разнесённого приёма радиосигналов, широко используются в точках доступа и адаптерах БЛВС. Такая антенна состоит из двух элементов (излучателей) и внутреннего коммутатора, подсоединяющего к приёмнику тот элемент, который принимает более мощный сигнал. Она помогает уменьшить негативный эффект многолучевого распространения радиоволн, вызванного их отражением от разных предметов, в результате чего один и тот же переданный радиосигнал многократно (с разной временной задержкой) поступает на вход приёмника точки доступа, что приводит к сильному ослаблению принимаемого сигнала.
Для увеличения зоны действия БЛВС требуются ещё более «интеллектуальные» антенны, к которым относятся фазированные антенные решётки. Такой решёткой, состоящей из большого числа излучателей, оборудован коммутатор Wi-Fi компании Vivato. Он функционирует как точка доступа, а его решётка наводит радиолуч на клиентское устройство стандарта 802.11. Данная антенная система увеличивает дальность связи (особенно на улице). Однако фазированные антенные решётки, как правило, имеют значительные габаритные размеры и стоят дорого.
Ещё один вариант реализации «интеллектуальной» антенны — адаптивная решётка. Такие решётки разрабатывают фирма Motia и другие производители. В них принятые элементами решётки сигналы умножаются на определённые весовые коэффициенты, а затем суммируются. Адаптивная решётка может быть реализована в виде дополнительной подсистемы, подсоединяемой к имеющемуся устройству Wi-Fi.
Этот подход является довольно перспективным, но, чтобы потенциальные заказчики смогли воспользоваться всеми преимуществами того или иного варианта построения «интеллектуальной» антенны, необходимо внести существенные изменения в стандарты на БЛВС. Рабочая группа IEEE 802.11n разрабатывает стандарт на БЛВС следующего поколения, обеспечивающую скорость передачи данных до 100 Мбит/с. В действующих сегодня стандартах 802.11a и 802.11g определена максимальная скорость передачи 54 Мбит/с, а её реальные значения составляют 25-30 Мбит/с.
Аналитики предполагают, что в стандарте 802.11n будет предусмотрена возможность использования устройств типа MIMO (Multiple Input, Multiple Output), работающих с несколькими антеннами. Такой продукт уже разработан компанией Airgo.