Незаметные убийства - Мартинес Гильермо. Страница 28
– Кажется, у него получилось. – По тону чувствовалось, что она и сама с трудом в это верит. И, заметив недоумение у меня на лице, пояснила: – Эндрю Уайлс! Вы что, ничего не знаете? Он попросил дополнительно два часа, кроме времени, отведенного на доклад на конференции по теории чисел в Кембридже. Его тема – гипотезы Шимуры-Таниямы. Представляете, если он добился-таки своего, значит, доказана теорема Ферма… Многие математики собираются ехать в Кембридж, чтобы лично присутствовать на его завтрашнем докладе. Возможно, это будет самый важный день в истории современной математики.
Я заметил, что в зал вошел Подоров. Вид у него был, как всегда, насупленный. Он глянул на очередь и, сев в кресло, решил полистать газету. Я направился к нему, с трудом удерживая в равновесии слишком полную чашку кофе и тарелку с muffin [33]. Подоров оторвал глаза от газеты и с презрительной гримасой обвел взглядом присутствующих.
– Ну и что? Вы тоже записались на завтрашнюю поездку? Могу одолжить мой фотоаппарат, – раздраженно бросил он. – Все ведь просто мечтают иметь фотокарточку грифельной доски, на которой Уайлс пишет q.e.d. [34].
– Я еще не решил, поеду или нет, – ответил я.
– А почему бы вам и не поехать? Дают бесплатный автобус, Кембридж очень красивый городок – в британском, конечно, духе. Вы там уже были?
Он рассеянно перевернул страницу, и глаза его наткнулись на крупный заголовок над сообщением о совершенных преступлениях и серии символов. Он прочел первые строки и снова посмотрел на меня. В глазах его мелькнуло что-то вроде тревоги и недоверия.
– А вы ведь и вчера обо всем этом уже знали, правильно я угадал? И когда же начались загадочные убийства?
– Первое случилось почти месяц назад, – сказал я, – но полиция только теперь решила сделать символы достоянием публики.
– А какую роль во всем этом играет Селдом?
– После каждого преступления послания приходят именно ему. Второе из них – с символом рыбы – появилось прямо здесь, его приклеили на стеклянную дверь института.
– Ах да. Что-то такое припоминаю. В то утро у нас и вправду была какая-то суета. Полиция приезжала, но я подумал, что кто-то разбил стекло.
Он снова углубился в газету и быстро прочел сообщение.
– Но здесь имя Селдома вообще не упоминается.
– Полиция, по всей видимости, решила сохранить это в тайне, но все три послания адресовались именно ему.
Подоров опять уставился на меня, и выражение его лица переменилось, будто в глубине души он над чем-то здорово потешался.
– Выходит, кто-то начал игру в кошки-мышки с великим Селдомом… Что ж, а вдруг и на самом деле существует высшая, божественная справедливость? И этот бог– математик, само собой разумеется, – сказал он как-то загадочно. – А какой вам представляется четвертая смерть? – спросил он внезапно. – О, она конечно же будет каким-то образом связана с древним и великим тетрактисом… – Он огляделся по сторонам, словно отыскивая источник вдохновения. – Помнится, Селдом увлекался боулингом, – добавил он, – по крайней мере в те давние времена. Тогда эта игра была почти неизвестна в России. В своем докладе он, если мне не изменяет память, сравнил вершины тетрактиса с расположением фигур перед началом партии. Существует такой прием, когда можно сокрушить все кегли сразу.
– Strike [35], – сказал я.
– Да, именно так. Великолепное слово, правда? – И повторил с очень сильным русским акцентом, сопровождая свои слова странной улыбкой, будто воображал этот неумолимый шар и летящие с плеч головы: —Strike!
Глава 19
К пяти часам мне удалось закончить первый – и весьма приблизительный – вариант отчета, но, прежде чем покинуть кабинет, я заглянул в электронную почту и обнаружил письмо от Селдома, в котором тот просил, чтобы я встретил его после окончания семинара у входа в Мертон-колледж, если, конечно, буду свободен в этот час. Я боялся опоздать, и мне пришлось идти довольно быстро. Поднявшись по ступенькам, ведущим к дверям маленьких аудиторий, я увидел через стеклянную дверь, что Селдом стоит у доски и обсуждает с двумя учениками какую-то задачу, хотя семинар уже завершился.
Когда ученики ушли, он жестом пригласил меня зайти и, складывая свои бумаги в папку, указал рукой на фигуру, оставшуюся на доске. Это был круг.
– Мы вспоминали геометрическую метафору Николая Кузанского: истина как окружность и человеческие попытки достичь ее – как последовательно вписанные в окружность многоугольники, у которых с каждым разом появляется все больше и больше граней, за счет чего их границы становятся все ближе к окружности, Это довольно оптимистическая метафора, потому что последовательные приближения позволяют угадать конечную фигуру. Однако существует иная возможность – она моим ученикам пока неведома, и она гораздо пессимистичнее, скажу даже, что она удручающе пессимистична. – Он быстро начертил рядом с кругом какую-то неправильную фигуру со множеством вершин и впадин. – Вы только вообразите, что формой своей истина напоминает очертание какого-либо острова, допустим Великобритании, с очень неровным берегом, с бесконечными выступами и углублениями. Если вы попытаетесь повторить здесь только что рассмотренный нами прием с вписанными многоугольниками, то столкнетесь с парадоксом Мандельброта. Конечная граница первой фигуры будет казаться все более и более недостижимой, с каждой новой попыткой будут появляться новые и новые выступы и углубления, и как бы мы ни старались, приближения нам не добиться. Точно так же истина не поддается нам, сколько бы мы ни старались к ней приблизиться. Что вам это напоминает?
– Теорему Гёделя? Многоугольники – это системы все с большим и большим количеством аксиом, но какая-то часть истины всегда будет оставаться вне досягаемости.
– Да, пожалуй, в определенном смысле это верно. Но это похоже и на наш случай тоже, на те выводы, к которым пришли Витгенштейн и Фрэнк: известных составляющих некоей серии, любого их количества, всегда будет недостаточно для того, чтобы… Как заранее узнать, с какой из двух фигур мы имеем дело? Знаете, – сказал он вдруг, – у моего отца была большая библиотека, в центре стеллажей помещался шкаф, где хранились книги, которые мне не следовало читать, и шкаф конечно же запирался на ключ. Каждый раз, когда отец открывал дверцу, я успевал разглядеть приклеенную внутри гравюру – изображение человека, который одной рукой касался пола, а другую тянул вверх. Внизу была надпись на незнакомом языке – со временем я узнал, что это немецкий. Со временем я обнаружил также книгу, показавшуюся мне волшебной: немецкий словарь, которым он пользовался, готовясь к занятиям. С помощью словаря, переводя слово за словом, я расшифровал-таки подпись. Фраза, на мой тогдашний взгляд, была простой и таинственной: «Человек – это не более чем серия его поступков». А у меня тогда еще сохранялась детская, то есть абсолютная, вера в слова, и я начал видеть людей как временные, незаконченные фигуры; фигуры-эскизы, всегда непостижимые. Если человек – это не более чем серия его поступков, раздумывал я, он не получит завершения до самой своей смерти, и этот единственный, последний из его поступков может перечеркнуть все предыдущее существование, опровергнуть всю его жизнь. К тому же больше всего я боялся как раз такой вот серии собственных поступков. Но человек – гораздо больше того, что я представлял и чего так боялся. – Селдом показал мне свои руки, испачканные мелом. На лбу у него тоже осталась забавная белая полоса, видно, он безотчетно провел по нему ладонью. – Пойду вымою руки, я быстро…. – сказал он. – Да, если желаете, можете спуститься по этой вот лестнице – там внизу кафетерий. Возьмите мне двойной кофе, ладно? Без сахара, пожалуйста.
Я подошел к стойке и заказал две чашки кофе. Тут появился Селдом, взял свою чашку и понес к столику, расположенному чуть поодаль, рядом с выходом в сад. Через открытую дверь кафетерия можно было наблюдать за туристами, которые нескончаемым потоком шли от главного входа по коридору к внутренним галереям колледжа.
33
Оладья из пористого дрожжевого теста (англ.).
34
Буквы, которые в математике используют для завершения доказательства («Quoderat demonstrandum» – «Что и требовалось доказать»). (Прим. автора.)
35
Удар (англ.).