Занимательная физика. Книга 1 - Перельман Яков Исидорович. Страница 15

Весть о столь изумительном изобретении доктора Орфиреуса быстро разнеслась по Европе, проникнув далеко за пределы Германии. Дошла она и до Петра, сильно заинтересовав падкого до всяких “хитрых махин” царя.

Петр обратил внимание на колесо Орфиреуса еще в 1715 г., во время своего пребывания за границей, и тогда же поручил А. И. Остерману, известному дипломату, познакомиться с этим изобретением поближе; последний вскоре прислал подробный доклад о двигателе, хотя самой машины ему не удалось видеть. Петр собирался даже пригласить Орфиреуса, как выдающегося изобретателя, к себе на службу и поручил запросить о нем мнение Христиана Вольфа, известного философа того времени (учителя Ломоносова).

Занимательная физика. Книга 1 - pic_54.png

Рис. 50. Разоблачение секрета колеса Орфиреуса. (Со старинного рисунка.)

Знаменитый изобретатель отовсюду получал лестные предложения. Великие мира сего осыпали его высокими милостями; поэты слагали оды и гимны в честь его чудесного колеса. Но были и недоброжелатели, подозревавшие здесь искусный обман. Находились смельчаки, которые открыто обвиняли Орфиреуса в плутовстве; предлагалась премия в 1000 марок тому, кто разоблачит обман. В одном из памфлетов, написанных с обличительной целью, мы находим рисунок, воспроизведенный здесь (рис. 50). Тайна “вечного двигателя”, по мнению разоблачителя, кроется просто в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателя, на часть оси колеса, скрытую в стойке.

Тонкое плутовство было раскрыто случайно только потому, что ученый доктор поссорился со своей женой и служанкой, посвященными в его тайну. Не случись этого, мы, вероятно, до сих пор оставались бы в недоумении относительно “вечного двигателя”, наделавшего столько шума. Оказывается, “вечный двигатель” действительно приводился в движение спрятанными людьми, незаметно дергавшими за тонкий шнурок. Этими людьми были брат изобретателя и его служанка.

Разоблаченный изобретатель не сдавался; он упорно утверждал до самой смерти, что жена и прислуга донесли на него по злобе. Но доверие к нему было подорвано. Недаром он твердил посланцу Петра, Шумахеру, о людском злонравии и о том, что “весь свет наполнен злыми людьми, которым верить весьма невозможно”.

Во времена Петра I славился в Германии еще и другой “вечный двигатель” — некоего Гертнера. Шумахер писал об этой машине следующее: “Господина Гертнера Perpetuum mobile, которое я в Дрездене видел, состоит из холста, песком засыпанного, и в образе точильного камня сделанной машины, которая назад и вперед сама от себя движется, но, по словам господина инвентора (изобретателя), не может весьма велика сделаться”. Без сомнения, и этот двигатель не достигал своей цели и в лучшем случае представлял собой замысловатый механизм с искусно скрытым, отнюдь не “вечным” живым двигателем. Вполне прав был Шумахер, когда писал Петру, что французские и английские ученые “ни во что почитают все оные перепетуи мобилес и сказывают, что оное против принципиев математических”.

Занимательная физика. Книга 1 - pic_55.png

Глава пятая. СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ

Задача о двух кофейниках

Перед вами (рис. 51) два кофейника одинаковой ширины: один высокий, другой — низкий. Какой из них вместительнее?

Занимательная физика. Книга 1 - pic_56.png

Рис. 51. В какой из этих кофейников можно налить больше жидкости?

Многие, вероятно, не подумав, скажут, что высокий кофейник вместительнее низкого. Если бы вы, однако, стали лить жидкость в высокий кофейник, вы смогли бы налить его только до уровня отверстия его носика — дальше вода начнет выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказывается столь же вместительным, как и высокий с коротким носиком.

Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться, Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.

Чего не знали древние

Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.

Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рис. 52, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, — и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!

Занимательная физика. Книга 1 - pic_57.png

Рис. 52. Водопроводные сооружения древнего Рима в их первоначальном виде.

Жидкости давят… вверх!
Занимательная физика. Книга 1 - pic_58.png

Рис. 53. Простой способ убедиться, что жидкость давит снизу вверх.

О том, что жидкости давят вниз, на дно сосуда, и вбок, на стенки, знают даже и те, кто никогда не изучал физики. Но что они давят и вверх, многие даже не подозревают. Обыкновенное ламповое стекло поможет убедиться, что такое давление действительно существует. Вырежьте из плотного картона кружок таких размеров, чтобы он закрывал отверстие лампового стекла. Приложите его к краям стекла и погрузите в воду, как показано на рис. 53. Чтобы кружок не отпадал при погружении, его можно придерживать ниткой, протянутой через его центр, или просто прижать пальцем. Погрузив стекло до определенной глубины, вы заметите, что кружок хорошо держится и сам, не прижимаемый ни давлением пальца, ни натяжением нитки: его подпирает вода, надавливающая на него снизу вверх.

Вы можете даже измерить величину этого давления вверх. Наливайте осторожно в стекло воду; как только уровень ее внутри стекла приблизится к уровню в сосуде, кружок отпадает. Значит, давление воды на кружок снизу уравновешивается давлением на него сверху столба воды, высота которого равна глубине кружка под водой. Таков закон давления жидкости на всякое погруженное тело. Отсюда, между прочим, происходит и та “потеря” веса в жидкостях, о которой говорит знаменитый закон Архимеда.

Занимательная физика. Книга 1 - pic_59.png

Рис. 54. Давление жидкости на дно сосуда зависит только от площади дна и от высоты уровня жидкости. На рисунке показано, как проверить это правило.

Имея несколько ламповых стекол разной формы, но с одинаковыми отверстиями, вы сможете проверить и другой закон, относящийся к жидкостям, а именно: давление жидкости на дно сосуда зависит только от площади дна и высоты уровня, от формы же сосуда оно совершенно не зависит. Проверка будет состоять в том, что вы проделаете описанный сейчас опыт с разными стеклами, погружая их на одну и ту же глубину (для чего надо предварительно приклеить к стеклам бумажные полоски на равной высоте). Вы заметите, что кружок всякий раз будет отпадать при одном и том же уровне воды в стеклах (рис. 54). Значит, давление водяных столбов различной формы одинаково, если только одинаковы их основание и высота. Обратите внимание на то, что здесь важна именно высота, а не длина, потому что длинный наклонный столб давит на дно совершенно так же, как и короткий отвесный столб одинаковой с ним высоты (при равных площадях оснований).