Занимательная физика. Книга 1 - Перельман Яков Исидорович. Страница 38

Занимательная физика. Книга 1 - pic_140.png

Рис. 131. Стереоскопическая зрительная труба.

Если увеличение труб 10-кратное, а расстояние объективов в 6 раз превышает нормальное расстояние между зрачками (т. е. равно 6,5 * 6 = 39 см), то воспринимаемое изображение в 6 * 10 = 60 раз пластичнее, чем при рассматривании невооруженными глазами. Это сказывается в том, что даже предметы, удаленные на 25 км, обнаруживают еще заметную рельефность.

Для землемеров, моряков, артиллеристов, путешественников подобные зрительные трубы положительно незаменимы, особенно если они снабжены шкалой, при помощи которой можно измерить расстояние (стереоскопические дальномеры).

Занимательная физика. Книга 1 - pic_141.png

Рис. 132. Призменный бинокль.

Призменный бинокль Цейса тоже дает этот эффект, так как взаимное расстояние его объективов более, чем нормальное расстояние между нашими глазами (рис. 132). В театральных биноклях, наоборот, расстояние между объективами уменьшено — для ослабления рельефа (чтобы кулисы не казались расставленными).

Вселенная в стереоскопе

Если мы направим стереотрубу на Луну или какое-нибудь другое небесное тело, мы никакого рельефа не заметим. Этого и следовало ожидать, ибо небесные расстояния чересчур велики даже для стереотруб. Что значат те 30 — 50 см, которые отделяют друг от друга объективы прибора, по сравнению с расстоянием от Земли до планет? Если бы возможно было соорудить прибор с расстоянием между трубами даже в десятки и сотни километров, он и тогда не дал бы никакого эффекта при наблюдении планет, удаленных от нас на десятки миллионов километров.

Здесь опять приходит на помощь стереоскопическая фотография. Предположим, мы сфотографировали какую-нибудь планету вчера и затем вторично сегодня; обе фотографии будут сняты с одного пункта Земли, но с разных точек солнечной системы, так как за сутки Земля успела передвинуться по орбите на миллионы километров. Снимки, разумеется, не будут тождественны. И если такие снимки вы поместите в стереоскоп, то увидите уже не плоское, а рельефное изображение.

Мы можем, следовательно, пользуясь движением Земли по ее орбите, получать снимки небесных тел с двух весьма отдаленных точек; снимки эти будут стереоскопическими. Представьте себе великана с такой гигантской головой, что расстояние между его глазами измеряется миллионами километров, и вы поймете, каких необычайных результатов достигают астрономы с помощью небесной стереофотографии.

Стереоскопом пользуются в настоящее время, чтобы открывать новые планеты, а именно те малые планетки (астероиды), которые во множестве кружатся между орбитами Марса и Юпитера. Еще недавно разыскание их было делом счастливого случая. Теперь же достаточно стереоскопически сравнить две фотографии данного участка неба, полученные в разное время; стереоскоп сразу выделит астероид, если он имеется на взятой пробе, так как он будет выступать из общего фона.

Стереоскопом улавливается не только различие в положении точек, но и различие в их яркости. Это дает астроному удобный способ находить так называемые переменные звезды, периодически меняющие свой блеск. Если на двух снимках неба какая-нибудь звезда вышла неодинаково ярко, то стереоскоп сразу же укажет астроному эту изменившую свой блеск звезду.

Зрение тремя глазами

Не думайте, что третий глаз здесь такая же обмолвка, как третье ухо в устах взволнованного Ивана Игнатьевича из “Капитанской дочки”: “Он вас в рыло, а вы его в ухо, в другое, в третье — и разойдитесь”. У нас речь в самом деле пойдет о том, чтобы видеть тремя глазами.

Видеть тремя глазами? Возможно разве приобрести себе третий глаз?

Представьте, мы будем говорить именно о таком зрении. Наука не в силах дать человеку третий глаз, но в ее власти дать возможность видеть предмет таким, каким он должен был бы казаться существу с тремя глазами.

Начнем с того, что человеку, лишившемуся одного глаза, вполне возможно рассматривать стереоскопические фотографии и получать от них то впечатление рельефности, которого воспринимать непосредственно он не может. Для этого нужно проектировать на экран, быстро сменяя один другим, снимки, предназначенные для правого и левого глаза; то, что человек двумя глазами рассматривает одновременно, одноглазый будет видеть здесь последовательно, в быстрой смене. Но результат полечится один и тот же, потому что весьма быстро сменяющиеся зрительные впечатления так же сливаются в один образ, как и одновременные [Возможно, что замечаемая иногда удивительная рельефность кинематографических картин объясняется, помимо указанных ранее причин, еще отчасти и тем эффектом, о котором сейчас говорится: если аппарат, производивший съемку, мерно покачивался при этом (как часто бывает вследствие работы механизма, движущего ленту), то снимки получались нетождественные; при быстрой же смене этих снимков на экране они сливаются в пашем сознании в рельефный образ.].

Но если так, то человеку с двумя глазами возможно одновременно видеть: одним глазом — две быстро сменяющиеся фотографии, а другим — еще одну фотографию, снятую с третьей точки зрения.

Иными словами, с одного предмета делаются три снимка, отвечающие трем различным точкам, как бы трем глазам. Затем два из этих снимков заставляют, быстро чередуясь, действовать на один глаз наблюдателя; при быстром их чередовании впечатления сливаются в один сложный рельефный образ. К этому образу присоединяется еще третье впечатление — от другого глаза, который смотрит на третий снимок.

При таких условиях мы хотя и смотрим только двумя глазами, но впечатление получаем совершенно такое же, как если бы смотрели тремя глазами. Рельефность при этом достигает высшей степени.

Что такое блеск?

Стереофотография, воспроизведенная у нас на рис. 133, изображает многогранники: один — черным по белому, другой — белым по черному. Что мы увидели бы, если бы взглянули на эти рисунки в стереоскоп? Трудно предугадать. Послушаем Гельмгольца:

“Когда на одной стереоскопической картинке какая-нибудь плоскость изображена белой, на другой — черной, то в соединенном изображении она кажется блестящей, даже когда для рисунка взята совершенно матовая бумага. Стереоскопические чертежи моделей кристаллов (так выполненные) производят впечатление, как будто модель кристаллов сделана из блестящего графита. Еще лучше выходит, благодаря этому приему, на стереоскопических фотографиях блеск воды, листьев и т.п.”.

Занимательная физика. Книга 1 - pic_142.png

Рис. 133. Стереоскопический блеск. Сливаясь при рассматривании в стереоскоп, эти рисунки дают изображение блестящего кристалла на черном фоне.

В старой, но далеко еще не устаревшей книге нашего великого физиолога Сеченова “Физиология органов чувств. Зрение” (1867 г.) находим прекрасное объяснение этого явления. Вот оно:

“В опытах искусственного стереоскопического слияния различно освещенных или различно окрашенных поверхностей повторяются действительные условия видения блестящих тел. Чем отличается в самом деле матовая поверхность от блестящей (полированной)? Первая отражает свет рассеянно во все стороны, поэтому кажется глазу всегда одинаково освещенной, с какой бы стороны он ни смотрел на нее; полированная же поверхность отражает свет лишь в определенном направлении; поэтому возможны даже такие случаи, когда один глаз человека, смотрящего на такую поверхность, получает от нее много отраженных лучей, а другой почти нисколько (эти условия и соответствуют именно случаю стереоскопического слияния белой поверхности с черной); случаи же неравного распределения отраженного света между глазами наблюдателя (т, е. случаи, когда в один глаз попадает больше, чем в другой) при рассматривании блестящих полированных поверхностей, очевидно, неизбежны.

Читатель видит, таким образом, что стереоскопический блеск представляет доказательство в пользу мысли, что опыт играет первенствующую роль в акте телесного слияния образов. Борьба полей зрения тотчас уступает место прочному представлению, как только зрительному аппарату, воспитанному опытом, дается возможность отнести различия их к какому-нибудь знакомому случаю действительного видения”.