Занимательная физика. Книга 2 - Перельман Яков Исидорович. Страница 13
буквой g обозначено ускорение силы земной тяжести;
оно равно, как известно, 9,8 м/с за секунду;
буквой v обозначим скорость велосипеда в тот момент, когда он достигает самой верхней точки круга.
Все эти величины мы можем связать двумя уравнениями. Во-первых, мы знаем из механики, что скорость, которую приобретает велосипед к моменту, когда, катясь по наклонной дорожке, он находится в С на уровне точки В (это положение изображено в нижней части на рис. 42), равна той, какую он имеет в верхней части петли, в точке В. Первая скорость выражается формулой [18]
или v2 = 2gx
Следовательно, и скорость и велосипедиста в точке В равна
, т. е. v2 = 2gx
Далее, для того чтобы велосипедист, достигнув высшей точки кругового пути, не упал вниз, нужно (см. стр. 55 — 56), чтобы развивающееся при этом центростремительное ускорение было больше, нежели ускорение тяжести, т. е. надо, чтобы
, или v2» gr
Но мы уже знаем, что v2 = 2gx; следовательно, 2gx» gr или
Итак, мы узнали, что для успешного выполнения этого головоломного фокуса необходимо устроить «чертову петлю» так, чтобы вершина наклонной части пути возвышалась над верхней точкой петли больше чем на 1/2 ее радиуса. Крутизна наклона роли не играет, — нужно только, чтобы пункт, с которого велосипедист начинает спускаться, возвышался над вершиной петли больше чем на 1/4 ее поперечника. Если, например, петля имеет в поперечнике 16 м, то артист должен начать спуск пе меньше чем с 20-метровой высоты. Не выполни он этого условия, никакое искусство не поможет ему описать «чертову петлю»: достигнув ее верхней части, он неминуемо упадет.
Расчет этот не учитывает влияния силы трения в велосипеде: считается, что скорости в точке С и точке В одинаковы. Поэтому нельзя слишком удлинять путь и делать очень отлогий спуск. При отлогом спуске в результате действия трения скорость велосипеда по достижении точки В будет меньшей, чем в точке С.
Надо заметить, что при исполнении этого трюка велосипедист едет без цепи, предоставляя машину действию тяжести: ни ускорять, ни замедлять своего движения он не может, да и не должен. Все его искусство в том, чтобы держаться середины деревянной дорожки; при малейшем уклонении артист рискует съехать с дорожки и быть отброшенным в сторону. Скорость движения по кругу весьма велика: при круге с поперечником 16 м ездок совершает оборот в 3 секунды. Это соответствует скорости 60 км в час! Управлять велосипедом при такой скорости, конечно, мудрено; но этого и не надо; можно смело положиться на законы механики. «Сам по себе велосипедный трюк, — читаем мы в брошюре, составленной профессионалом, — при правильном расчете и прочной конструкции аппарата не опасен. Опасность трюка лежит в самом артисте. Если рука артиста дрогнет, если он будет взволнован, потеряет самообладание, если ему неожиданно сделается дурно, то можно ожидать всего».
На этом же законе покоится всем известная «мертвая петля» и другие фигуры высшего пилотажа. В «мертвой петле» первостепенную роль играет правильный «разгон» пилота по кривой и умелое управление самолетом.
Какой-то шутник объявил однажды, что знает способ без обмана обвешивать покупателей. Секрет состоит в том, чтобы покупать товары в странах экваториальных, а продавать — поближе к полюсам. Давно известно, что близ экватора вещи имеют меньший вес, нежели близ полюсов; 1 кг, перенесенный с экватора на полюс, прибавится в весе на 5 г. Надо пользоваться, однако, не обыкновенными весами, а пружинными, притом изготовленными (градуированными) на экваторе, иначе никакой выгоды не получится: товар станет тяжелее и на столько же тяжелее сделаются гири. Если купить тонну золота где-нибудь в Перу, а сбыть ее, скажем, в Исландии, то можно, пожалуй, на этом кое-что заработать, — при бесплатном провозе, разумеется.
Не думаю, чтобы подобная торговля могла кого-нибудь обогатить, но по существу шутник прав: сила тяжести действительно увеличивается с удалением от экватора. Происходит это оттого, что тела на экваторе описывают при вращении Земли самые большие круги, а также и оттого, что земной шар как бы вздут у экватора.
Главная доля недостачи веса обусловлена вращением Земли; оно уменьшает вес тела близ экватора на 1/290 долю по сравнению с весом того же тела у полюсов.
Разница в весе при переносе тела с одной широты на другую для легких тел ничтожна. Но для предметов грузных она может достигнуть величины довольно солидной. Вы и не подозревали, например, что паровоз, весящий в Москве 60 тонн, по прибытии в Архангельск становится на 60 кг тяжелее, а по прибытии в Одессу — на столько же легче. В свое время с острова Шпицбергена ежегодно вывозили в более южные порты до 300 000 тонн угля. Если бы это количество было доставлено в какой-нибудь экваториальный порт, то там обнаружена была бы недостача в 1200 тонн, будь груз перевешен при приемке на пружинных весах, вывезенных со Шпицбергена. Линкор, весивший в Архангельске 20 000 тонн, по прибытии в экваториальные воды становится легче тонн на 80; но это остается неощутимым, так как соответственно становятся легче и все другие тела, не исключая, конечно, и воды в океане [19].
Если бы земной шар вращался вокруг своей оси быстрее, чем теперь, например, если бы сутки длились не 24 часа, а, скажем, 4 часа, то разница в весе тел на экваторе и полюсах была бы заметна резче. При четырехчасовых сутках, например, гиря, весящая на полюсе 1 кг, весила бы на экваторе всего 875 г. Именно таковы приблизительно условия тяжести на Сатурне: близ полюсов этой планеты все тела на 1/6 тяжелее, чем на экваторе.
Так как центростремительное ускорение возрастает пропорционально квадрату скорости, то нетрудно вычислить, при какой скорости вращения оно на земном экваторе должно стать в 290 раз более, т. е. сравняться с силой притяжения. Это наступит при скорости, в 17 раз большей, нежели нынешняя (17*17 — почти 290). В таком состоянии тела перестанут оказывать давление на свои опоры. Другими словами, если бы Земля вращалась в 17 раз быстрее, вещи на экваторе совсем не имели бы веса! На Сатурне это наступило бы при скорости вращения, всего в 2, 5 раза большей, чем нынешняя.
Глава четвертая
ВСЕМИРНОЕ ТЯГОТЕНИЕ.
«Если бы мы не наблюдали ежеминутно падения тел, оно было бы для нас самым удивительным явлением», — писал знаменитый французский астроном Араго. Привычка делает то, что притяжение всех земных предметов Землей кажется нам естественным и обычным явлением. Но когда нам говорят, что предметы притягивают также и друг друга, мы не склонны этому верить, потому что в обыденной жизни ничего подобного не замечаем.
Почему, в самом деле, закон всеобщего притяжения не проявляется постоянно вокруг пас в обычной обстановке? Почему не видим мы, чтобы притягивали друг друга столы, арбузы, люди? Потому что для небольших предметов сила притяжения чрезвычайно мала. Приведу наглядный пример. Два человека, отстоящих на два метра друг от друга, притягивают один другого, но сила этого притяжения ничтожна: для людей среднего веса — менее 0,01 миллиграмма. Это значит, что два человека притягивают друг друга с такою же силой, с какой гирька в 0,00001 грамма давит на чашку весов; только чрезвычайно чувствительные весы научных лабораторий способны обнаружить столь ничтожный грузик! Такая сила, понятно, не может сдвинуть нас с места, — этому мешает трение наших подошв о пол. Чтобы сдвинуть нас, например, на деревянном полу (сила трения подошв о пол равна 30% веса тела), нужна сила не меньше 20 кг. Смешно даже сравнивать эту силу с ничтожной силой притяжения в одну сотую миллиграмма. Миллиграмм — тысячная часть грамма; грамм — тысячная часть килограмма; значит, 0, 01 мг составляет половину одной миллиардной доли той силы, которая нужна, чтобы сдвинуть нас с места! Удивительно ли, что при обычных условиях мы не замечаем и намека на взаимное притяжение земных тел?
[18]
При этом мы пренебрегаем энергией вращающихся ободов велосипедных колес; влияние этого обстоятельства на результат расчета незначительно (см. мою книгу «Знаете ли вы физику?», § 47).
[19]
Поэтому, между прочим, судно сидит в экваториальных водах столь же глубоко, как и в полярных; оно хотя и делается легче, но на столько же легче становится и вытесняемая им вода.