Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Вайнберг Стивен. Страница 52

Хотя квантовая механика является как бы сценой, на которой разыгрываются все явления природы, сама по себе эта сцена пуста. Квантовая механика позволяет вообразить бесчисленное множество возможных физических систем: систем, состоящих из частиц любого сорта и взаимодействующих самым разным образом, и даже систем, вообще не состоящих из частиц. История физики в ХХ в. отмечена все возрастающим пониманием того, что актеров в драме, разыгрывающейся на квантовой сцене, определяют принципы симметрии. Современная стандартная модель сильных, электромагнитных и слабых взаимодействий основана на симметриях, а именно на пространственно-временных симметриях специальной теории относительности, которые требуют, чтобы стандартная модель была сформулирована на языке теории полей, и на внутренних симметриях, требующих существования электромагнитного и других полей, переносящих взаимодействия. Тяготение тоже можно понять с помощью принципов симметрии, заложенных в эйнштейновскую общую теорию относительности и утверждающих, что законы природы не должны меняться в результате любых возможных изменений нашего описания событий в пространстве и времени.

На основании векового опыта общепризнано, что окончательная теория должна покоится на принципах симметрии. Мы ожидаем, что эти симметрии объединят тяготение со слабыми, электромагнитными и сильными взаимодействиями стандартной модели. Но за прошедшие десятилетия мы так и не узнали, каковы эти симметрии, и не сумели построить удовлетворительной квантовой теории гравитации, включающей симметрии общей теории относительности.

Возможно, мы близки к переменам. За последнее десятилетие бурно развивался радикально новый подход к квантовой теории гравитации, а может быть, и ко всему остальному, – теория струн. Эта теория является первым приемлемым кандидатом на окончательную теорию.

Корни теории струн восходят к 1968 г., когда теоретики пытались понять, как устроены сильные взаимодействия, не обращаясь к квантовой теории полей, не пользовавшейся тогда популярностью. Молодой теоретик из ЦЕРНа Габриэле Венециано сумел просто угадать формулу, определявшую вероятности рассеяния двух частиц на разные углы при разных энергиях и обладавшую некоторыми общими свойствами, которые вытекали из принципов теории относительности и квантовой механики. Используя известные математические приемы, которые в свое время проходит каждый студент-физик, он сумел построить поразительно простую формулу, удовлетворявшую всем необходимым условиям. Формула Венециано привлекла всеобщее внимание. Вскоре другие теоретики обобщили ее и положили в основу систематической приближенной схемы. В те годы никто и не помышлял о возможном применении этих идей к квантовой теории тяготения. Вся работа мотивировалась надеждой лучше понять сильные ядерные взаимодействия. (До создания правильной теории сильных взаимодействий – квантовой теории поля, известной под названием квантовая хромодинамика, оставалось еще несколько лет.)

В процессе работы стало ясно [179], что формула Венециано и ее расширения и обобщения – не просто удачные догадки, а теория физических сущностей нового типа, получивших название релятивистских квантово-механических струн. Конечно, обычные струны состоят из частиц – протонов, нейтронов, электронов. Но новые струны совсем другие: предполагается, что протоны и нейтроны состоят из них. Дело обстояло не так, будто на кого-то сошло вдохновение и он догадался, что материя построена из струн, а затем начал строить соответствующую теорию; на самом деле теория струн была построена до того, как кто-то понял, что это такое.

Струны можно представить себе как крохотные одномерные разрезы на гладкой ткани пространства. Струны могут быть открытыми, с двумя свободными концами, или замкнутыми, как резиновая лента. Пролетая в пространстве, струны вибрируют. Каждая из струн может находиться в любом из бесконечного числа возможных состояний (мод) колебаний, похожих на обертоны, возникающие при колебаниях камертона или скрипичной струны. Со временем колебания скрипичной струны затухают, так как энергия этих колебаний переходит в энергию случайного движения атомов, из которых скрипичная струна состоит, т.е. в энергию теплового движения. Напротив, струны, о которых сейчас идет речь, поистине фундаментальные составные части материи, и могут продолжать колебаться бесконечно долго. Они не состоят из атомов или чего-то в этом роде, поэтому энергии их колебаний не во что переходить [180].

Предполагается, что струны очень малы, так что если разглядывать их с достаточно больших расстояний, они кажутся точечными частицами. Так как струна может находиться в любой из бесконечно большого числа возможных мод колебаний, она выглядит как частица, которая может принадлежать к одному из бесконечно большого числа возможных сортов, соответствующих определенной моде колебаний струны.

Первые варианты теории струн [181] были не свободны от трудностей. Вычисления показывали, что среди бесконечно большого числа мод колебаний замкнутой струны существует одна мода, в которой струна выглядит как частица с нулевой массой и спином, вдвое большим, чем у фотона [182]. Напомним, что развитие теории струн началось с попытки Венециано понять сильные ядерные взаимодействия, так что первоначально эта теория рассматривалась как адекватное описание сильного взаимодействия и участвующих в нем частиц. Неизвестна ни одна частица такой массы и с таким спином, принимающая участие в сильных взаимодействиях, более того, мы полагаем, что если бы такая частица существовала, она должна была бы быть давно обнаружена, так что налицо серьезное противоречие с экспериментом.

Но все дело в том, что частица с нулевой массой и спином, вдвое большим, чем у фотона, существует. Но это не частица, принимающая участие в сильных взаимодействиях, это гравитон, квант гравитационного излучения. Более того, с 60-х гг. было известно, что любая теория, в которой присутствует частица такого спина и такой массы, должна выглядеть более или менее похоже на общую теорию относительности [183]. Та безмассовая частица, которая была теоретически обнаружена в ранних версиях теории струн, отличалась от истинного гравитона только в одном важном пункте – обмен этой новой частицей должен был порождать силы, напоминавшие гравитационные, но только в 1029раз более сильные.

Как часто бывает в физике, теоретики, занимавшиеся струнами, нашли правильное решение неправильно поставленной задачи. В начале 80-х гг. теоретики все больше и больше стали приходить к убеждению, что новые безмассовые частицы, возникшие как математическое следствие уравнений струнных теорий, являются не сильновзаимодействующим аналогом гравитона, а самым настоящим гравитоном [184]. Чтобы при этом гравитационное взаимодействие имело правильную интенсивность, нужно было увеличить коэффициент натяжения струн в основных уравнениях теории до такой степени, чтобы разность энергий между наинизшим и следующим по величине энергетическими состояниями струны составляла не пустячную величину порядка нескольких сот миллионов эВ, характерную для ядерных явлений, а величину порядка планковской энергии 1019ГэВ, когда гравитационное взаимодействие становится столь же сильным как и другие взаимодействия. Эта энергия так велика, что все частицы стандартной модели – кварки, глюоны, фотоны – должны быть сопоставлены с наинизшими модами колебаний струны, в противном случае, требовалось бы так много энергии на то, чтобы их породить, что мы никогда не смогли бы эти частицы обнаружить.

С этой точки зрения квантовая теория поля типа стандартной модели представляет собой низкоэнергетическое приближение к фундаментальной теории, которая является совсем не теорией полей, а теорией струн. Сейчас мы полагаем, что квантовые теории полей работают столь успешно при энергиях, доступных современным ускорителям, совсем не потому, что окончательное описание природы возможно на языке квантовой теории поля, а потому, что любая теория, удовлетворяющая требованиям квантовой механики и специальной теории относительности, при достаточно малых энергиях выглядит как квантовая теория поля. Мы все больше и больше воспринимаем стандартную модель как эффективную квантовую теорию, причем прилагательное «эффективная» служит для напоминания, что все такие теории суть лишь низкоэнергетические приближения к совершенно другой теории, возможно, теории струн. Стандартная модель – сердцевина современной физики, но такое изменение отношения к квантовой теории поля может означать начало новой эры постмодерна.