Самые знаменитые головоломки мира - Лойд Сэм. Страница 44

70. У куба с ребром в 17,299 дюйма и у куба с ребром в 25,469 дюйма суммарный объем (21 697,794418608 кубического дюйма) в точности равен суммарному объему 22 кубов с ребром в 9,954 дюйма каждый. Следовательно, зеленый и черный чай были смешаны в пропорции (17 299) 3к (25 469) 3

71. В задаче нужно найти число, которое, будучи возведенным в куб, даст точный квадрат. Так происходит, оказывается, с любым числом, которое само является квадратом. Наименьший квадрат (если не считать 1) равен 4, так что монумент мог содержать 64 малых куба (4 ? 4 ? 4) и стоять в центре квадрата 8 ? 8. Конечно, это не согласуется с пропорциями, приведенными на рисунке. Поэтому мы испробуем следующий квадрат, 9, что приводит к монументу из 729 кубов, стоящему на квадрате 27 ? 27. Это и есть правильный ответ, ибо только он согласуется с рисунком.

72. Ребро большого ящика должно иметь в длину 13,856 дюйма, а ребро маленького ящика – 6,928 дюйма. Суммарная длина ящиков составляет 20,784 дюйма, то есть 1,732 фута, так что если брать по 5 долларов за погонный фут, то цена составит 8,66 доллара. Оба ящика вместе содержат чуть больше 2992 кубических дюймов, то есть 1,732 кубического фута. При стоимости провоза в 5 долларов за кубический фут цена составит 8,66 доллара.

73. Эту маленькую перестановку четырех пустых и четырех полных бокалов легко запомнить: один длинный ход, два коротких, затем снова один длинный ход. Сначала передвиньте бокалы 2 и 3 на дальний конец, затем заполните образовавшуюся брешь бокалами 5 и 6. Заполните новую брешь бокалами 8 и 2 и, наконец, переместите бокалы 1 и 5.

74. Тому, кто не сумел выбраться из бесконечного водоворота чисел, мы скажем, что кратчайший выход из леса совершается с помощью любопытного движения туда и обратно вдоль единственной диагонали.

Ходы таковы: в направлении ЮЗ – на 4, в направлении ЮЗ – на 6, в направлении СВ – на 6, в направлении СВ – на 2, в направлении СВ – на 5, в направлении ЮЗ – на 4, в направлении ЮЗ – на 4, в направлении ЮЗ – на 4 и затем краткий рывок на СЗ к свободе!

75. Все участники пикника сумеют переправиться через реку за 17 рейсов:

1) переправляются мистер и миссис Синч;

2) мистер Синч возвращается один обратно;

3) мистер Синч берет с собой вторую леди;

4) мистер Синч возвращается со своей женой;

5) мистер Синч берет с собой еще одну леди;

6) мистер Синч возвращается один;

7) два джентльмена переправляются на другой берег;

8) возвращается джентльмен с женой;

9) переправляются мистер и миссис Синч;

10) возвращается джентльмен с женой;

11) два джентльмена переправляются на другой берег;

12) мистер Синч возвращается один;

13) мистер Синч перевозит леди;

14) мистер и миссис Синч возвращаются;

15) мистер Синч перевозит леди;

16) мистер Синч возвращается один;

17) мистер Синч переправляется вместе с женой.

76. На приведенном рисунке показано, каким образом квадратное одеяло 13 х 13 можно разрезать на II малых квадратов – наименьшее число квадратных лоскутов, на которые удается разрезать одеяло, не нарушая его «клетчатую структуру». Эта головоломка на самом деле оказалась трудной, и те, кому удалось найти правильный ответ, заметили, вероятно, что здесь применяется некий математический принцип, имеющий отношение к квадратным корням.

Самые знаменитые головоломки мира - pic_222.jpg

77. Игру можно закончить за 26 ударов, используя прогон в 150 ярдов и подход в 125 ярдов:

150 ярдов: 1 прогон;

300 ярдов: 2 прогона;

250 ярдов: 2 подхода;

325 ярдов: 3 прогона и 1 обратный подход;

275 ярдов: 1 прогон и 1 подход;

350 ярдов: 4 подхода и 1 обратный прогон;

225 ярдов: 3 подхода и 1 обратный прогон;

400 ярдов: 1 прогон и 2 подхода;

425 ярдов: 2 прогона и 1 подход.

78. Ответ ясен из рисунка.

Самые знаменитые головоломки мира - pic_223.jpg

79. Есть много чисто математических способов решения этой задачи, но ради простоты я посоветовал бы вычесть половину длины диагонали из 1/ 4периметра флага. Периметр составляет ровно 25 футов, а длина диагонали равна 9,01388. Значит, мы должны из 6,25 вычесть 4,50694, получив 1,74306 фута – искомую толщину креста.

80. Если перекупщик, взвешивая шерсть, на каждый фунт получил лишнюю унцию, то в его «фунте» содержалось 17 унций. Когда же он продавал шерсть, то в его новом «фунте» оказывалось 15 унций, а излишек шерсти составлял 2 унции. Если эти две лишние унции продавались по той же самой цене, причем дополнительный доход от такой жульнической операции составил 25 долларов, то ясно, что эти 25 долларов относятся ко всей сумме, полученной от продажи шерсти, по 15 унций на 1 фунт, как 2 к 15. Поскольку на 1/15 приходится 12,5 доллара, то вся сумма, или 15/15, составляет 187,5 доллара. Именно такую сумму заплатил бы перекупщик, если бы он не получал никаких комиссионных.

Однако мы находим, что, взимая по 2 % с продавца и торговца, он получил соответственно 3,75 и 4,25 доллара, что составило 8 долларов комиссионных в дополнение к 25 долларам жульнического дохода. Далее, если бы он действовал честно, то платил бы за 17 унций, что дало бы (если говорить точно) в сумме 199,21875 доллара. Следовательно, его комиссионные на всей сделке составили бы только 7,96875 доллара, так что из-за своего жульничества он получил дополнительно 3 1/8 цента. Поскольку было сказано, что с помощью жульничества он получил лишних ровно 25 долларов, то мы должны уменьшить сумму в 187,5 доллара, чтобы жульнический доход составил точно 25 долларов.

Далее, поскольку 3 1/8 цента составляют ровно 1/801 часть от 25,03125 доллара, то мы должны уменьшить 187,5 доллара на 1/801 часть этой суммы, что даст 187,27 доллара. Поэтому он получил жульнический доход в 25 долларов и 0,0006 цента. Ради еще большей точности я бы предположил, что продавцу шерсти перекупщик заплатил 187,2659176029973125 доллара минус 2 % комиссионных, или 3,745 доллара.

81. Раскусить этот старый орешек не удастся, если не знать, что в Англии и США для измерения веса большинства товаров используется коммерческая система мер, тогда как при взвешивании драгоценных металлов там пользуются тройской системой. Поэтому вес перьев определяется по первой, а вес золота – по второй системе.

Иногда считают, что в обеих системах фунт весит одинаково, но в коммерческой системе он делится на 16 унций, а в тройской – на 12, а иногда полагают, что при переходе от одной системы к другой не меняется унция, зато фунт в коммерческой системе весит 16 унций, а в тройской – только 12. Ни то, ни другое не верно. Истина состоит в том, что 1 фунт в коммерческой системе весит 7000 гранов, а в тройской – только 5760 гранов. [28]

Таким образом, шесть дюжин дюжин фунтов перьев в коммерческой системе весят 864 фунта, а полдюжины дюжин, или 72 фунта, в тройской системе при переводе в коммерческую систему составляют лишь 59 фунтов 3 унции и 407,5 грана. Поскольку 864 фунта равны 863 фунтам 15 унциям и 437,5 грана, то, вычитая отсюда 59 фунтов 3 унции и 407,5 грана, мы получим 804 фунта 12 унций и 30 гранов. Так выглядит ответ в коммерческой системе мер.

82. Сварливые соседи проложили свои дорожки, как показано на рисунке.

Самые знаменитые головоломки мира - pic_224.jpg

83. У честного молочника вначале было 5 галлонов молока в бидоне № 2 и 11 галлонов воды в бидоне № 1. В результате проведенных манипуляций в бидоне № 1 оказалось 6 галлонов воды и 2 галлона молока, а в бидоне № 2–5 галлонов воды и 3 галлона молока.

вернуться

28

В обеих системах 1 гран равен 64,8 мг. – Прим. перев.