Для юных физиков. Опыты и развлечения (сборник) - Перельман Яков Исидорович. Страница 15

Сейчас мы говорили о метре, дециметре и сантиметрах. Но в метрической системе есть мера еще меньше сантиметра. Это десятая часть сантиметра – миллиметр. Если вам не приходилось еще иметь дело с миллиметрами при работе за станком или чертежной доской, то вы, я уверен, не в состоянии будете даже приблизительно указать на память величину этой меры. Имея же под рукой спичку, вы справитесь с этим вполне удовлетворительно. Вам не придется делить длину спички на 50 равных частей, как, быть может, подумает иной читатель, зная, что в 5 сантиметрах заключается 50 миллиметров. Нет, вам достаточно будет помнить, что толщина спички – 2 миллиметра. Если я спрошу вас теперь, сколько миллиметров имеет в толщину карандаш, то, не имея под руками мерки, вы уже не станете гадать на глаз, а сравните толщину карандаша с толщиной спички; таким путем вы легко установите, что толщина карандаша – около 7 миллиметров (потому что она больше толщины спички примерно в 3 1/2 раза).

Итак, запомним же твердо обычные размеры спички:

Для юных физиков. Опыты и развлечения (сборник) - _61.jpg

Прежние русские меры из спичек

Предположите, что к вам попала в руки старая книга, в которой все размеры указаны не в метрической системе, а в прежних русских мерах. Вы пожелаете узнать хотя бы приблизительно длину аршина, чтобы отчетливо представить себе то, о чем говорится в книге (например, размеры самодельной лодки, лыж или чего-нибудь в этом роде). Раздобыть же аршин и теперь уже не легко, а через несколько лет его вовсе нельзя будет отыскать ни в продаже, ни в обиходе. Как же вам быть?

Выручит вас все та же маленькая палата мер, которая кроется в спичечном коробке. Существует очень интересное и довольно точное соотношение [20] между метром и аршином: если по сторонам прямого угла отмерить по полметра, то прямая линия, соединяющая свободные концы отмеренных линий, равна аршину (рис. 1). Мы можем воспользоваться этим соотношением:

Для юных физиков. Опыты и развлечения (сборник) - _62.jpg
Рис. 1. Соотношение между метром и аршином.

выложим в прямой ряд 10 спичек, затем от конца его, под прямым углом к первому ряду, выведем другой такой же (см. рис. 2) и измерим расстояние между свободными концами рядов: это и будет примерно аршин.

Для юных физиков. Опыты и развлечения (сборник) - _63.jpg
Рис. 2. Как с помощью 20 спичек получить приблизительно длину аршина.

Если нам нужен не целый аршин, а пол-аршина, то составим ряды не из 10 спичек, а только из 5 спичек каждый.

Далее: если вам понадобится узнать примерную длину прежнего русского фута – который в точности равен современному английскому футу, – то вы найдете ее, выложив в ряд 6 спичек, потому что фут равен примерно 30 сантиметрам (5x6=30).

Наконец, дюйм – прежний русский или современный английский – легко получить довольно точно, если спичку поделить ровно пополам: дюйм почти равен 2 1/2 сантиметрам [21] .Как развить глазомер?

Хорошо, конечно, изощрить свой глазомер настолько, чтобы оценивать размеры предметов прямо на глаз, даже и без помощи спичек. Но, чтобы достигнуть такого искусства, нужно некоторое время упражняться. И всего удобнее вести подобные упражнения на спичках, в форме, например, следующей «игры в глазомер».

Играют вдвоем или втроем. Один из играющих отмечает на столе некоторое расстояние, и все трое должны определить на глаз, сколько спичек поместится в этой длине. Затем выкладыванием спичек проверяют, кто угадал лучше, т. е. чья оценка ближе к истине: этот игрок и получает одно очко. После 25 промеров подсчитывают, у кого больше очков, т. е. кто победитель в состязании на точность глазомера.Научившись, благодаря этой игре, хорошо оценивать небольшие расстояния в спичках, вы тем самым приобретете навык измерять их по глазомеру в сантиметрах, зная, что длина спички – 5 сантиметров.

2. Спичечные задачи

Коробок спичек – не только крошечная палата мер, но и своего рода ящик с сюрпризами, заключающий в себе обширный выбор забавных, а подчас и довольно замысловатых задач и головоломок. Вот один из многочисленных образчиков подобных задач; для начала избираем очень легкую задачку.

Из четырех квадратов три

Задача 1-я

Перед вами (рис. 3) фигура, составленная из 12 спичек и содержащая 4 равных квадрата. Задача состоит в том, чтобы, переложив 4 спички этой фигуры, получить новую фигуру, состоящую всего из 3-х равных квадратов. В новую фигуру должны, значит, входить те же 12 спичек, но иначе расположенные. Переместить нужно непременно 4 спички – не больше и не меньше.

Для юных физиков. Опыты и развлечения (сборник) - _64.jpg

Рис. 3.

Решение

Решение ясно из прилагаемого рис. 4, на котором пунктирными линиями обозначено первоначальное положение спичек.

Для юных физиков. Опыты и развлечения (сборник) - _65.jpg
Рис. 4.

Квадрат из спичек Задача 2-я

Эта задача замысловатее предыдущей. Возьмите 4 спички и расположите их таким образом, чтобы они образовали 4 прямых угла. Я нарочно не указываю здесь этого первоначального расположения спичек: в его отыскании и заключается суть головоломки. Когда это сделано, переложите одну спичку так, чтобы при новом расположении спички ограничивали квадрат.Решение

Задачу эту можно решать разнообразными способами, и в этом ее особая занимательность. Можно, например, за первоначальное положение взять то, которое указано на рис. 5 (налево): в этой фигуре четыре прямых угла, обозначенных цифрами 1, 2, 3, 4. Переложить надо, конечно, среднюю спичку этой фигуры, замкнув квадрат.

Для юных физиков. Опыты и развлечения (сборник) - _66.jpg
Рис. 5.

Другие примеры начального расположения спичек указаны на рис. 6, 7 и 8. Какую спичку и как надо переложить, – ясно из рисунков.

Для юных физиков. Опыты и развлечения (сборник) - _67.jpg
Рис. 6.

Для юных физиков. Опыты и развлечения (сборник) - _68.jpg
Рис. 7.

Для юных физиков. Опыты и развлечения (сборник) - _69.jpg
Рис. 8.

Вероятно, читателям удастся отыскать еще и другие способы решения этой задачи, но едва ли посчастливится им напасть на то совершенно неожиданное решение, которое изображено на рис. 9 и 10. Первоначальное расположение спичек берется такое, как на рис. 9. Для получения же квадрата верхняя спичка чуть отодвигается вверх (рис. 10): получается крошечный квадратик, «ограниченный 4-мя спичками».

Для юных физиков. Опыты и развлечения (сборник) - _70.jpg
Рис. 9.

Для юных физиков. Опыты и развлечения (сборник) - _71.jpg
Рис. 10.

Это оригинальное решение вполне правильно и удовлетворяет условиям задачи: ведь не требовалось, чтобы квадрат получился непременно большой! Еще спичечные задачи

Рассмотренные сейчас две задачи дают представление о характере тех головоломок, которые можно извлечь из спичечного коробка. Число задачек этого рода так велико, что лет двадцать тому назад один немецкий автор (Тромгольд) собрал в отдельную книгу свыше 200 самых разнообразных спичечных головоломок. В свое время книжечка эта имелась и в русском переводе (С. Тромгольд. «Игры со спичками». Одесса. 1907). Так как в наше время ее уже, к сожалению, нет в продаже, то позволяю себе привести здесь из нее десятка два задач, по образцу которых читатель, без сомнения, сможет уже и сам составить длинный ряд других. Многие из них легки, но попадаются и очень замысловатые. Чтобы не лишать читателя удовольствия доискаться решения самостоятельно, победоносно выйдя из хитро расставленных для него затруднений, ответы напечатаны не сразу после задач, а собраны вместе в конце всей главки [22] .

Начнем с более легких:Задача 3-я

а) Переложить 2 спички так, чтобы получилось 7 равных квадратов.