Математика в занимательных рассказах - Перельман Яков Исидорович. Страница 20
14, 3, 2, 1, 13, 14, 3, 12, 15, 3.
Приведем замечание немецкого математика Шуберта о числе возможных задач при «игре в 15».
«Сколько всего возможно задач, т. е. сколько различных расположений можно дать 15 шашкам, причем каждый раз пустое поле расположено справа внизу? Чтобы определить, сколько перестановок можно получить с помощью 15 предметов, начнем с 2-х предметов: а и Ь. Они могут дать лишь две перестановки, именно — ab и Ьа. При трех предметах имеется уже втрое больше перестановок, т. е. 6, так как предмет „а“ может быть поставлен перед Ьс и перед cb, и, кроме того, имеются еще две перестановки, начинающиеся с Ь, и две, начинающиеся с с. Отсюда можно заключить, что четыре предмета а, Ь, с, d могут дать вчетверо большее число различных перестановок, т. е. 4 ? 3 ? 2 = 24 перестановки. Продолжая так, можно найти, что 15 шашек допускают всего
2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 ? 10 ? 11 ? 12 ? 13 ? 14 ? 15
перестановок. Вычислив это произведение, мы найдем для числа задач игры внушительное число:
1 биллион 307 674 миллиона 365 000».
Из этого огромного числа задач ровно половина принадлежит к разрешимым и столько же — к неразрешимым. Заметим еще, что если бы возможно было ежесекундно давать шашкам новое положение, то, чтобы перепробовать все возможные расположения, потребовалось бы, при непрерывной работе круглые сутки, свыше 40 000 лет.
Странная задача на премию
Профессор Г. Симон
Лет 20 тому назад в Берлине подвизался искусный счетчик, предлагавший публике такую задачу (переделываем ее на русский лад):
«Кто сможет уплатить 5 рублей, 3 рубля или 2 рубля полтинниками, двугривенными и пятаками, всего 20-ю монетами, — тому будет выдано наличными деньгами сто рублей».
Посетителям вручались необходимые монеты, — конечно, заимообразно. Но обещанная сотня рублей должна была остаться навсегда в руках счастливца, которому удалось бы решить задачу.
Разумеется, пол-Берлина потело над разрешением этой задачи (стояли как раз жаркие июльские дни), казавшейся не особенно трудной. Сто рублей хорошо пригодились бы всем, значит — стоит потрудиться. По мере того как выяснялась бесполезность попыток, физиономии решавших вытягивались, и розовые мечты о заманчивой награде испарялись. Надежды оказывались обманчивыми. Ловкий счетчик мог безбоязненно обещать в десять раз большую награду. Никто не вправе был бы на нее притязать, ибо задача требует невозможного.
Как в этом убедиться?
Нам не понадобится глубоко забираться в дебри алгебры, но все же не будем бояться х, у и z.
Рассмотрим сначала, можно ли уплатить требуемым образом пять рублей. Пусть для этого нужно ? полтинников, у — двугривенных и z — пятаков. Сумма их должна составить 500 копеек, т. е.
50х + 20у + 5z = 100,
или, разделив на 5,
10х + 4у + z = 100.
Это легко осуществить на разные лады. Если, например, взять х = 8, то будем иметь
80 + 4у + z = 100,
или
4у + z = 20;
последнему уравнению можно удовлетворить, если принять z = 4, или 8, или 12, или 16 и, следовательно, (при z = 4) 4у = 16, у = 4. Действительно, 8 полтинников, 4 двугривенных и 4 пятака составляют 500. Однако при этом не выполнено условие употребить в общей сложности 20 монет: мы употребили 8 + 4 + 4 = 16 монет. К нашему первому уравнению
10х + 4у + z = 100
необходимо, следовательно, присоединить второе
x + у + z = 20.
Соединяя их в одно, посредством вычитания второго из первого, мы освобождаемся от z и получаем
9х + Зу = 80;
теперь сразу становится очевидным, что не может быть таких целых чисел, которые удовлетворили бы этому уравнению. Потому что 9 раз х, каково бы ни было х, есть непременно число, кратное 3; то же верно для числа Зу; следовательно, сумма 9х + Зу должна делиться без остатка на 3, то есть никак не может равняться 80.
Задача приводит к противоречивому требованию, и значит — ее решение невозможно.
Совершенно так же невозможно и составление требуемым образом сумм в 3 рубля и в 2 рубля. В первом случае, как каждый легко может убедиться, получается уравнение:
9х+3у = 40;
во втором:
9х+ Зу = 20.
Оба равенства невозможны, так как ни 40, ни 20 не делятся без остатка на 3.
Сказанным задача собственно исчерпывается. Но поучительно присоединить к ней рассмотрение вопроса, какие же суммы можно этими 20-ю монетами в самом деле уплатить, — разумеется так, чтобы получилось целое число рублей.
Если обозначим это число рублей через т, то у нас будет уравнение:
50х + 20у + 5 z= 100m,
или
10х + 4y + z= 20 т,
при условии, что
х + у + z = 20,
откуда путем вычитания имеем:
9х + Зу = 20 т — 20 = 20 (т— 1).
Так как 9х + 3у кратно 3, то и 20 (т— 1) должно быть кратно 3.
Но 20 не делится на 3, так что кратным 3 должно быть только т — 1.
Если (т — 1) равно 0, 3, 6, 9, 12 и т. д., то т должно быть на единицу больше, т. е. одно из чисел: 1, 4, 7, 10, 13 и т. д. Только такие суммы рублей могут быть уплачены нашими 20-ю монетами. Но очевидно, что 10 рублей — наибольшая сумма, так как 20 полтинников составляют уже 10 рублей. Принимая поэтому только четыре возможных суммы — в 1 р., в 4 р., в 7 р. и в 10 р., имеем четыре случая:
9х + Зу — 20 (т — 1) = 0, или 60, или 120, или 180,
другими словами,
Зх + у = 0, или 20, или 40, или 60.
Только эти случаи и надо рассмотреть.
1) Один рубль. Зх + у = 0.
Это равенство возможно лишь тогда, когда и ? и у равны нулю, так как, приняв для них даже наименьшее целое число 1, получим 4, а не 0. Единственное решение для этого случая, следовательно, есть ? = 0, у = 0, а потому z = 20, т. е.
один рубль можно уплатить, только употребив 20 пятаков.
Рассмотрим теперь другой крайний случай:
2) Десять рублей. Зх + у = 60.
Так как у должно быть кратно 3 (иначе сумма его с Зх не делилась бы без остатка на 3), то примем у = 0, 3, 6… Для случая у = 0 имеем ? = 20 и г = 0. Это дает нам уже упомянутое решение: 20 полтинников. Но оно и единственное, потому что для у = 3 имеем ? = 19, и (х + у) превышает высшую сумму 20.
3) Четыре рубля. Зх + у = 20.