Стол находок утерянных чисел - Левшин Владимир Артурович. Страница 7

НУЛЕВОЕ ЗАТМЕНИЕ

Вы, конечно, понимаете, что не одни пирожковые, пельменные и парикмахерские попадались нам в Городке юных пенсионеров. Ведь жители его состояли не только из поваров и парикмахеров. Были там токари и лекари, фрезеровщики и фальцовщики, таксисты и артисты, сапожники и художники (один из них увековечил Пусю), закройщики и обойщики, стекломойщики и спортсмены… В общем, представители самых разных профессий, а стало быть, и учёные. Биологи и геологи, гидрологи и зоологи, вулканологи и археологи, метеорологи и лингвисты. А также физики и электроники, математики и бионики, демографы и картографы, географы и океанографы, правоведы и почвоведы, агрономы и астрономы…

Все эти люди с увлечением работали. В их распоряжении были прекрасно оборудованные лаборатории, в том числе — великолепная обсерватория. Находилась она в двух шагах от нашей прогулочной аллеи, и Пуся, всё ещё смеясь, обратил внимание на царившую там суету. Тут он вдруг замолчал и, словно бы вспомнив что-то важное, со всех ног понёсся к обсерватории.

Мы, естественно, поспешили за ним и пришли как раз вовремя, чтобы получить необходимые разъяснения, прежде чем…

Но я забегаю вперёд и могу упустить что-нибудь важное. Лучше начну с самого главного: в обсерватории готовились к полному солнечному затмению. И начала его ждали через несколько минут. Как видите, теперь уже незачем было гадать, зачем Пуся привёл нас в Городок юных пенсионеров. Ведь он, находясь в должности Главной ищейки, должен был наводить Главного терятеля на интересные, богатые ассоциациями впечатления! А что может сравниться с полным солнечным затмением? Разве что полное лунное…

Кстати, и то и другое происходит тогда, когда Солнце, Луна и наблюдатель, находящийся на Земле, оказываются на одной прямой. Вся разница в том, что при солнечном затмении Луна находится между. Солнцем и Землёй и, само собой, закрывает Солнце от наблюдателя. Когда же случается лунное, тут между Солнцем и Луной находится уже Земля. Она-то и отбрасывает тень, которая постепенно наползает на лунный диск и при полном затмении скрывает его от нас совершенно.

Стол находок утерянных чисел - _009.jpg

Сегодня, однако, ожидалось затмение не просто полное, а редкая его разновидность — кольцеобразное затмение. И дело тут вот в чём. Поперечник Луны много меньше поперечника Солнца. Почти в четыреста раз! Луна между тем при полном солнечном затмении закрывает солнечный диск целиком. Отчего? Да оттого, что Луна во столько же раз ближе к Земле. Вот нам и кажется, что лунный и солнечный диски по размерам совершенно одинаковы. Но иногда, когда Луна и Земля взаиморасположены на своих орбитах определенным образом, лунный диск видится нам чуть меньшим, чем солнечный. И тогда вокруг чёрного солнечного диска остаётся узкое, световое кольцо. Оно ярко сверкает на чёрном, усеянном звёздами небе, и напоминает сказочную корону. Или пылающий обруч, через который прыгают дрессированные хищники в цирке.

Волшебная картина. Совершенно волшебная! А уж если глядеть на неё сквозь специальное стекло, да ещё через разверстый купол обсерватории, она во сто раз прекраснее, уверяю вас! Именно такой, стократ более прекрасной мы её и увидели, когда прильнули к своим стёклам.

Но тут произошло ещё одно, очень для нас важное событие. Пока там, в беспредельной космической вышине, совершалось солнечное затмение, в голове у Главного терятеля наступило внезапное прояснение. Он вдруг заметил, что светящийся ободок вокруг чёрного затмённого солнца необыкновенно напоминает нуль. Сравнение его привело в восторг тамошних астрономов. Неудивительно: ведь где астрономия, там и математика. А математики — кто ж этого не знает! — поголовно неравнодушны к нулю. И вот, посовещавшись, они порешили переименовать кольцеобразное затмение в нулевое.

Главного терятеля это очень обрадовало. Он и не подозревал, что его замечание приведёт к таким важным научным переменам. Но не знал он и другого: что сам переменится к лучшему. Всеобщее внимание вдохновило его на новые подвиги. В голове у него прояснилось ещё больше, и вдруг… И вдруг там блеснула ещё одна нулевая ассоциация. Он вспомнил, что в утерянном номере нулей не было.

Так у нас появился ещё один признак утерянного числа, и девочка тотчас занесла его в свой блокнот. А я взял свой и записал вот что: «Успех окрыляет человека».

К тому времени, как нам покинуть обсерваторию, солнце снова засияло вовсю. Но девочка всё ещё вспоминала чёрное звёздное небо, и пылающее кольцо вокруг чёрного диска, и неожиданную нулевую ассоциацию Главного терятеля.

— Не понимаю, — сказала она вдруг. — С чего это все носятся с этим нулём? Что в нём особенного? Фитюлька. Пустышка. Дырка от бублика. А разговоров… Много шума из ничего.

— Это ты к месту заметила, — отозвался я. — Как видишь, из ничего всё же кое-что получается. Хотя бы шум.

— Так то в жизни, — возразила девочка.

— Не только в жизни. Иной раз в математике из нуля такое выходит…

— Например? — сейчас же прицепилась девочка.

— Например, вот что! — вмешался Главный терятель.

Он присел на корточки и написал пальцем на дорожке то самое десятизначное число, о котором говорил в павильоне «Чашка чая, десять фишек»: 9 999 999 999.

— Перед нами огромное число, — сказал он. — Девять миллиардов девятьсот девяносто девять миллионов девятьсот девяносто девять тысяч девятьсот девяносто девять. Внимание! Сейчас мы сыграем с ним в крестики-нулики. Каким образом? Очень просто. Ставим после него крестик, то есть знак умножения, потом нулик и — фьють! От нашего числа ничего не осталось. Десять миллиардов без единицы превратились в ничто, в нуль! 9 999 999 999 х 0 = 0. Что вы на это скажете, миледи?

— Скажу, что нуль превращает что-то в ничто. Но может ли он из ничего сделать что-то? Или хотя бы превратить маленькое число в большое?

— Ну конечно! — воскликнул Главный терятель. — Приставь нуль справа к любому натуральному числу, и оно сразу станет вдесятеро больше.

— Это я и так знаю! — отмахнулась девочка. — Но в вашем примере нуль выступает как цифра. Обыкновенная цифра, которая означает, что в разряде пусто. А меня интересует, что может нуль как число…

— Сейчас увидим, — сказал я, очень довольный девочкиным вопросом. — Возьмём единицу и разделим её на обыкновенную дробь. Вот хоть на одну десятую. 1: 1/10. Что получим?

Девочка записала пример в блокноте и, подумав, объявила, что у неё получилось 10. Ведь разделить единицу на одну десятую — это всё равно что умножить её на десять.

— Отлично, — одобрил я. — Запиши другой пример: 1: 1/100. Что получим теперь?

— Сто.

— Тогда раздели единицу на одну тысячную.

— Получим тысячу.

— На одну миллионную.

— Получим миллион.

— А теперь поглядим в блокнот. Перед нами ряд числовых выражений:

Стол находок утерянных чисел - eq003.jpg
Стол находок утерянных чисел - eq004.jpg

Нетрудно заметить, что чем меньше делитель, иначе говоря, чем он ближе к нулю, тем больше становится частное. Так?

— Так.

— Значит, если бы мы разделили единицу на нуль, то получили бы число ещё большее. И было бы оно не просто большим, а бесконечно большим. Уж поверь мне на слово. Так может нуль превратить малое число в большое?

— Выходит, может, — согласилась девочка. Но отчего вы сказали «если бы»? Почему бы нам и впрямь не разделить единицу на нуль? Вот взять да и разделить!

— Ну, тут статья особая, — уклончиво возразил я. — Тут мы вторгаемся во владения бесконечности. И тебе туда пока рановато. К тому же делить на нуль в математике не положено. Особенно нуль на нуль. Не положено также возводить нуль в нулевую степень. Или умножать нуль на бесконечность. Потому что тут мы уже вторгаемся во владения неопределённости…

— Туда мне, конечно, тоже рановато, — съязвила девочка и, подхватив на руки Пусю, запела на мотив «Чижика»: — Там, где нуль, всегда запрет. Ребятишкам хода нет!