Там, где не слышно голоса - Соучек Людвик. Страница 26

— Зеркала? Да ведь это аппараты направленной связи! — сказал бы один.

— Параболоиды ультракоротковолновой связи! — заявил бы второй, — любитель длинных и сложных иностранных выражений.

— Связь Герца, — объяснил бы деловито третий.

Четвертый сказал бы, что это аппараты ретрансляционной связи.

Пятый, не согласившись ни с одним из предшественников, стал бы утверждать, что это средства радиорелейной связи.

Там, где не слышно голоса - i_108.jpg

Развитие пошло по направлению создания антенн направленной связи, возвышающихся в настоящее время на вершинах холмов почти во всех странах мира.

Во всех случаях имелось бы в виду одно и то же устройство. Откуда же такое необычное для науки и техники разнообразие названий? Все имеет свои принципы. Бурная история радиорелейной связи — будем ее впредь называть именно так — столь коротка, что до унификации названий просто «не дошли руки». Началась это история с не совсем удачного эпизода, происшедшего в 1931 году в Ла-Манше, как раз в тех местах, где когда-то поднимался в воздух и приземлялся прославленный летчик Блерио, а почти на 150 лет раньше совершил свои полеты на воздушном шаре искатель приключений Бланшар. В 1931 году состоялись первые опыты по установлению связи между английским городом Дувром и Кале, расположенном на французском берегу, при помощи чрезвычайно коротких волн, длиною всего в 18 сантиметров (до этого для связи использовались волны, измерявшиеся метрами, десятками и даже сотнями метров!).

Опыты были вскоре приостановлены. Прием отличался низким качеством, слышимость была плохой, ее ухудшали многочисленные помехи. А ведь оба города находились достаточно близко. Но тем не менее опыты эти привлекли внимание военных специалистов. Они рассуждали вполне логично: главным оружием в войне, которая нависла над Европой, будут самолеты. Англии, уверенной прежде в своей полной безопасности, несмотря на ее островное положение, несмотря на наличие мощного военного флота, охранявшего берега, угрожала опасность с воздуха, — оттуда мог каждую минуту посыпаться град бомб. Ведь нечто подобное жителям Лондона довелось уже испытать в первую мировую войну, когда над городом появились сигарообразные тела огромных немецких «цеппелинов».

Прежде всего нужно было вовремя узнать о приближении вражеских самолетов. Слово «вовремя» означало в данном случае «время, необходимое для того, чтобы истребители английской авиации могли подняться со своих аэродромов навстречу врагу, а артиллеристы зенитных батарей подготовиться к отражению воздушной атаки».

Морякам было в этом отношении проще. Они довольно быстро разработали способ обнаружения приближающихся неприятельских подводных лодок. Были созданы звукоулавливатели, регистрировавшие шум винтов подводной лодки, и эхолоты, замечавшие даже звук, отраженный от корпуса подводной лодки, притаившейся под водой с выключенными моторами. А там, где откажут звуковые приборы, поможет АСДИК, — прибор, использующий неслышимые простым ухом ультразвуки высокой частоты, которые проникают на гораздо большую глубину и на большее расстояние, чем обычные звуки.

Противовоздушная оборона также пыталась использовать огромные звукоуловители. Но самолеты противника поднимались на такую высоту, что звук их моторов почти не достигал земли. Не оставалось ничего другого, как сдать неуклюжие звукоуловители в утиль. Вот если бы создать нечто вроде АСДИКа против самолетов. Но, постойте! А что, если для этого использовать ультракороткие волны, которые как раз открыли радиотехники. Ведь они жаловались именно на то, что эти волны чутко реагируют на все окружающие предметы, что для четкой передачи сообщения нужно очень точно настроить антенны приемных и передаточных аппаратов.

В 1934 году в Боусдее были созданы специальные лаборатории по изучению возможности использования ультракоротких волн для противовоздушной обороны. На протяжении сравнительно короткого времени ученым удалось создать РАДАР. Это сокращенное обозначение — «Radio Detection And Ranging», то есть прибора для радиопеленгации и измерения.

Принцип действия радара не сложен. Искривленная параболическая антенна направляет в пространство узкий пучок ультракоротких радиоволн. Натолкнувшись на препятствие, например, на самолет, волны возвращаются обратно и улавливаются специальным приемником, на экране которого появляется силуэт обнаруженного предмета. По его форме обслуживающий персонал радиолокатора может легко определить характер предмета, замеченного радаром. Таким образом можно обнаружить не только самолеты, но и корабли, скрытые в тумане, или плавающие во мраке ночи льдины, подводные рифы, горы, метеоры, короче говоря, все, что угодно. Лучи радара могут достигнуть даже поверхности Луны и Венеры и, таким образом, позволят уточнить наши представления о расстоянии, отделяющем нас от этих планет.

От радара к радиорелейной связи только один шаг. Дорогостоящий и тяжелый кабель заменит невидимый пучок очень коротких (измеряемых дециметрами или сантиметрами) волн, связывающих по прямой линии передатчик с приемником. Из «приемника» сообщение тем же самым путем направляется на другую ретрансляционную, усилительную станцию. Как вы знаете, у этого способа связи есть свой существенный минус. Антенны ретрансляционных станций должны находиться на прямой линии друг от друга. Холм, башня или дом, если они окажутся на пути, нарушают связь. Радиоволны, отражаясь от этих предметов, рассеиваются, антенна приемного аппарата регистрирует более слабый, нечеткий сигнал.

И вот мы становимся свидетелями удивительного события. На те же местах, где полтораста лет назад стояли давно уже разрушенные домики оптического телеграфа Шаппа, на высоких холмах, с которых открывается вид на широкие просторы, на башнях и вышках снова, уже во второй раз, вырастают телеграфные устройства. Первая ретрансляционная линия проходит как раз по старой линии Шаппа: Париж — Лиль.

Радиорелейная связь — хороший помощник. С ее помощью можно принимать и передавать звуковые и видовые сигналы телевидения даже цветного телевидения, радиопрограммы и, главное, телефонные разговоры. Конечно, не один разговор, а сразу десять (так называемая десятиканальная система) или шестьдесят и больше.

Ретрансляция с холма на холм — не слишком ли это мало в наш технический век? Во всяком случае инженеры не хотят мириться с таким положением. Чем выше холм, тем дальше видно. Чем дальше видно, тем длиннее «прыжок», тем меньше передаточных станций, тем меньше издержки на строительство линии связи. А раз нет достаточно высоких холмов, то мы их построим. Не холмы, конечно, это был бы напрасный труд, а башни и мачты. Чтобы они упирались в облака.

По всей Европе вырастают иглы телевизионных и ретрансляционных мачт. А люди не успокаиваются. Как поднять параболические антенны и усилительную аппаратуру ретрансляционных станций выше самой высокой мачты?

Воздушные шары! Японцы планируют передачи через Тихий и Атлантический океаны при помощи цепи закрепленных воздушных шаров, которые бы позволили осуществить ретрансляцию вокруг всего земного шара. Но… достаточно одной бури… и… Что заменит шары?

Самолеты! Самолеты летают высоко, даже в стратосфере, на них можно поместить огромные параболические антенны и сложную аппаратуру. Они могут сменять друг друга над сушей и над морем. Но… нужны громадные средства, прием затруднен помехами, вызванными электроаппаратурой самого самолета, трудно направить пучок волны на движущуюся цель…

 Значит, мы достигли предела? Нет! Что же остается? А что поднимается выше всего?

СПУТНИК!

Да! Спутник! В августе 1960 года был запущен первый спутник связи «Эхо 1». Он был чрезвычайно прост — огромный шар диаметром в 30 метров, наполненный газом после выхода на орбиту. Целенаправленный пучок волн должен отразиться от его поверхности под точно рассчитанным углом и вернуться на Землю в точке, отстоящей на несколько тысяч километров от передатчика. Что и говорить — прыжок порядочный! Но вести передачу с помощью такого, покрытого алюминием гиганта, нелегко, а главное, неэффективно. Не спасают положения ни огромные антенны, ни приемные станции, оборудованные новейшей техникой — квантовыми усилителями, способными зарегистрировать малейшее электромагнитное колебание. Несмотря на это, на 1963 год был запланирован выпуск следующего «пассивного» ретранслятора «Рибоунд», а в начале 1964 года на орбиту выведен спутник «Эхо 11», наблюдение над которым впервые совместно вели США и СССР.