Боевые корабли - Перля Зигмунд Наумович. Страница 81

Боевые корабли - pic_225.jpg

В прошлом столетии появился прибор – осциллятор. В осцилляторе стальная пластинка (мембрана)' под действием переменного тока колеблется с очень большой частотой. Возникают звуковые волны, которые передаются окружающей среде – воде. Осциллятор – источник звуковых колебаний, но он же может служить и приемником. Когда посланные откуда-нибудь или отраженные звуковые волны доходят до осциллятора, который «молчит», они заставляют мембрану колебаться. Прибор так устроен, что от этих колебаний возникает электрический ток, а другие приборы снова превращают его в звуковые сигналы.

Боевые корабли - pic_226.jpg

Современные осцилляторы превратились в систему микрофона и звукоприемника телефонного типа. Еще более совершенная аппаратура для передачи и приема ультразвука, появившаяся в начале первой мировой войны и непрестанно улучшающаяся, «рисует» эти сигналы (с помощью самопишущих приборов) в виде начерченных линий, или контура морского дна, или того предмета-препятствия, откуда звук отразился. Передатчики и приемники звуковых сигналов помещаются под днищем корабля внутри корпусов обтекаемой формы. Корпус излучателя делается или убирающимся (это значит, что можно его убрать, спрятать в углубление в днище корабля), или крепится наглухо.

В 1917 году, в конце первой мировой войны, очень остро ощущалась необходимость в наиболее совершенном оружии против германских подводных лодок. И вот тогда известный французский ученый профессор Ланжевен предложил снабдить надводные корабли излучателем ультразвука. Он справедливо считал, что именно ультразвуковой луч будет служить кораблю так же верно, как палка слепому, как чувство осязания. Если он встретит корпус подводной лодки и отразится к своему излучателю, не случится никакой ошибки в определении направления, откуда пришло его «эхо», – оно будет точно известно. Скорость распространения ультразвука в воде тоже известна. Значит, можно будет точно определить место неприятельской подводной лодки.

В конце первой мировой войны ультразвуковые приборы еще только проходили первые испытания. В последние десятилетия ученые усиленно работали над их улучшением. И к началу второй мировой войны «излучатели» ультразвука сделались уже испытанным и надежным средством обнаруживания подводных лодок.

В 1941 году целая группа работников одного из наших заводов заслужила высокую награду – Сталинскую премию – за создание ультразвукового прибора, который во время Отечественной войны помогал советскому флоту в борьбе с подводными лодками фашистов.

* * *

Устройства для нащупывания подводных препятствий называются подводнозвуковыми приборами наблюдения (и связи), а люди корабля, которые работают с ними, – акустиками. Наименование это происходит от греческого слова «акустика»; по-русски оно означает «учение о звуке». На акустиков корабля (и их приборы) и возложена задача во-время услышать невидимого врага и дать сначала направление, а затем и точку попадания для удара по противнику.

Теперь проследим, как они это делают. Представим себе боевую работу старшины- акустика на эсминце, который входит в охранение каравана транспортов с войсками и идет в строю конвоя на одном из его флангов.

Помещение, в котором он работает, расположено в носовых надстройках корабля, где-то около мостика. Акустик, сидит перед пультом управления системой звукового нащупывания и прислушивается – к коротким, отрывистым звукам-гудкам, которые через , каждую секунду-две издаются репродуктором (сверху на пульте). Он внимательно следит за шкалами-циферблатами приборов- на них все время отмечаются' истинный курс и курсовой угол корабля (угол между диаметральной плоскостью и направлением на какую-нибудь точку). На пульте – небольшой металлический маховичок. Акустик очень медленно вращает «баранку» маховичка слева направо и обратно. Короткие гудки попрежнему звучат отрывисто, четко, чисто; нет никаких помех, никакого эха этих звуков. Время от времени акустик доносит вахтенному офицеру на мостике: «Нет эха!» и продолжает попрежнему вращать, медленно поворачивать свой маховичок слева направо и справа налево.

Акустик знает, что под кораблем, из его днища, торчит и кружится, завихряя воду, обтекаемый убирающийся кожух. В нем находится самая важная часть всего устройства- ультразвуковой осциллятор-«излучатель». Именно там, в этом излучателе, импульсы – «вспышки» электрического тока превращаются в сверхбыстрые ¦механические колебания, в ультразвуки, которые передаются воде волнами. Они, эти волны, образуют узкий, слегка расходящийся луч. Пластина, которая колеблется в осцилляторе, состоит из двух стальных пластин с проложенной между ними третьей пластиной из кварца или cегнетовой соли. Оба эти вещества (и некоторые другие) обладают очень интересным свойством. Если пластину такого вещества сжимать или растягивать, то на ее противоположных гранях возникают электрические заряды: на одной-положительные, на другой – отрицательные. Это явление получило название пьезоэлектрического эффекта. Если, наоборот, к противоположным граням таких пластин подводить электрические заряды, положительные и отрицательные, они, пластины, начнут сжиматься и растягиваться, начнут колебаться и звучать. Колебания будут совершаться с такой же частотой, с какой будут подаваться к граням прерывистые электрические заряды-«вспышки». Эта частота может быть очень большой – несколько десятков тысяч колебаний в секунду. Поэтому и получаются не обыкновенные звуки, а неслышимые ультразвуки. Но особые приборы в передающем и принимающем устройствах делают их слышимыми, легко улавливаемыми человеческим слухом.

Теперь снова понаблюдаем за работой акустика. Маховичок в его руке и пульт управления со всеми приборами соединены с излучателем. Когда вращается маховичок, вместе с ним вращается и пронизывающий воду длинный ультразвуковой луч. Корабль в каждый момент своего движения как бы представляет собой центр подводного круга, разделенного горизонтальным диаметром на две полуокружности -«носовую» и «кормовую». Ультразвуковой луч – подвижный радиус этого круга. Когда корабль идет с хорошей скоростью, почти невозможно, чтобы тихоходная подводная лодка могла оказаться вдруг где-то в «кормовой» части круга. Поэтому акустик шарит своим лучом только впереди, по какой-то дуге «носовой» полуокружности.

Если условия звуковой разведки благоприятны, звук-разведчик не сворачивает со своего пути и безошибочно, на полной, доступной для него дистанции «ловит» подводную лодку противника. Но бывают и такие условия звуковой «разведки», когда точно направленный луч как бы сбивается со своего пути, сворачивает с него, не дойдя до своей мишени.

Что же заставило его отклониться от верного направления?

Боевые корабли - pic_227.jpg

Как расположены на надводном корабле устройства его механического «слуха», посылающие и принимающие «донесения» звука-«разведчйка»:

I – пульт управления' установкой; 2, 3 – прибор, на экране которого световой луч «рисует» донесения звука-«разведчика», и указатель, дающий точку атаки; 4 – прибор – указатель расстояния до цели; 5 – пусковой реостат мотора для опускания и подъема убирающегося «излучателя» ультразвука; в – соединительная коробка устройства, регулирующего частоту звука; 7 – главная соединительная коробка электроцепи; 8 – усилительное устройство; 9 – «излучатель» ультразвука в обтекаемом кожухе и устройство для его опускания и подъема; 10-запасное устройство для опускания и подъема «излучателя»;

II – главное устройство для управления опусканием и подъемом «излучателя»; 12 – выпрямитель тока; 13 – трансформатор; 14 – выключа ющее устройство.