Мир микробов - Смородинцев Анатолий Александрович. Страница 18
Но не только клубеньковые бактерии обладают способностью усваивать азот атмосферы и тем самым повышать урожай сельскохозяйственных культур.
В 1893 г. С. Н. Виноградским был открыт анаэробный микроб — клостридий, свободно живущий в почве и усваивающий газообразный азот. В 1901 г. учёные выделили другой микроорганизм, обладающий той же функцией, но развивающийся в присутствии кислорода, — аэробную бактерию азотобактер. Азотобактер строит белки своего тела, пользуясь азотом воздуха, а энергию, необходимую для этого процесса, получает, окисляя углеродистые соединения — сахар, крахмал, спирты. Отмершие клетки азотобактера разлагаются гнилостными микробами, выделяющими при этом аммиак, окисляются нитрифицирующими бактериями до азотной кислоты, а ее соли в виде селитры используются зелёными растениями. Хотя азотобактер фиксирует меньше атмосферного азота, чем клубеньковые бактерии, все же он способен накопить до 30–40 килограммов азота на 1 гектар.
Давно было замечено, что в Крыму табаки дают хороший урожай в течение ряда лет без внесения дополнительных удобрений. Заинтересовавшись причиной этого явления, академик С. Костычев и А. Шелоумова нашли, что на корнях табака прижилось очень много клеток азотобактера, которые снабжают растения азотистыми соединениями. Отсюда и родилась идея повышения урожая некоторых сельскохозяйственных культур путём заражения их корневой системы азотобактером. С 1937 г. по предложению А. Шелоумовой в Советском Союзе в массовом масштабе начато изготовление нового бактериального удобрения — азотобактерина. Выращенная в лаборатории культура азотобактера смешивается с торфом или перегноем и в таком виде запаковывается в ящики и рассылается в колхозы. В день посева семена увлажняются, тщательно перелопачиваются вместе с азотобактерином и высеваются. Азотобактер поселяется на корневой системе растения и значительно повышает урожай сельскохозяйственной культуры. Особенно удачные результаты получились с овощами. Так, урожай томатов увеличивается на 26 процентов, капусты — на 34 процента, огурцов — на 14 процентов. Прибавка урожая картофеля составила 15–20 процентов. Особенно эффективен азотобактерин, если он применяется в свежеприготовленном виде. Поэтому наиболее рационально было бы изготовлять его на месте — в колхозах. Колхозники ряда областей уже освоили приготовление азотобактерина и значительно повышают свои урожаи. Применяя азотобактерин собственного изготовления, в колхозе «Новая жизнь» Горьковской области собрали урожай ранней капусты, обладавшей крупными и тугими вилками, в количестве 360 центнеров на 1 гектар, та же капуста без азотобактерина дала только 220 центнеров.
Кроме азотистых соединений, большую роль в питании растений играют также соединения фосфора. К сожалению, фосфор находится в почве большей частью в виде сложных, не усваиваемых растением соединений. И здесь на помощь растению приходят микробы. Расщепляя эти соединения, бактерии освобождают фосфорную кислоту, которая в виде растворимых солей хорошо усваивается растением. Такие бактерии были получены в виде чистых культур в Советском Союзе. В настоящее время делаются попытки применить эти бактерии в качестве нового бактериального землеудобрительного препарата, называемого фосфоробактерин. Многочисленные опыты показывают, что фосфоробактерин является эффективным средством повышения урожайности зерновых культур.
Мы рассмотрели деятельность микробов в почве. Мы убедились, что микробы имеют огромное значение для сельского хозяйства. Изучение роли микробов в почвах позволяет нам правильно направить их деятельность и поставить их на службу человеку. Вместе с тем перед нами вырисовывается ведущая роль микробов в общем круговороте азотистых соединений в природе.
В этом круговороте можно различить несколько стадий, каждая из которых осуществляется специально приспособленной группой микроорганизмов. Вначале отмершие животные и растения разлагаются гнилостными и некоторыми другими микробами до простейших соединений. Образовавшийся при этом аммиак под влиянием нитрифицирующих микробов превращается в соли азотной кислоты — селитру. Селитра потребляется растениями, но может также разложиться денитрифицирующими бактериями до свободного азота. Но и свободный азот не теряется безвозвратно: клубеньковые и свободно живущие азотфиксирующие бактерии усваивают его и опять-таки превращают в соединения, используемые растениями.
Такого же типа превращение вещества, осуществляемое микроорганизмами, наблюдается и с соединениями, содержащими другие необходимые для жизни растения элементы — фосфор, серу, железо, углерод. Особенно интересны по своему практическому значению превращения углеродистых соединений, на которых основан целый ряд промышленных производств пищевых продуктов. Но об этом — в следующей главе.
7. Микробы в пищевой промышленности
Углерод имеет огромное значение для жизни человека, животных и растений. Простейшее соединение углерода — углекислый газ — с помощью световой энергии усваивается зелёными растениями и превращается в высокопитательные для человека и животных сложные углеводы: сахара, крахмал, клетчатку. В организме эти соединения, являясь важнейшим источником питания и дыхания, разрушаются, причём в качестве конечного продукта распада образуется углекислота, которая снова утилизируется растениями. Этим обеспечивается постоянный круговорот углерода в природе.
Превращение углеродистых соединений происходит не только в организме человека и животных, но и в огромных масштабах совершается микробами. В предыдущей главе мы уже говорили о распаде клетчатки и пектиновых веществ. В этой главе мы рассмотрим превращение других углеродистых соединений, главным образом сахаров. Эти соединения имеют особую питательную ценность и являются составной частью ряда высокополезных пищевых продуктов.
Используя разнообразные превращения сахара, человек с незапамятных времён приготовлял различные продукты. Вино, уксус, хлеб, кисломолочные продукты входили в рацион древнейших народов. Но до развития научной микробиологии не было известно, что все эти продукты получаются в результате деятельности микробов, превращающих сахар в спирт или молочную кислоту, а спирт — в уксус.
Наблюдая за процессом брожения виноградного сока, древние виноделы видели, что по мере превращения сока в вино происходит его просветление, а на дне накапливается осадок. В средние века некоторые учёные считали, что этот осадок является отбросами, экскрементами вина, образующимися при самоочищении «души» вина. Но было замечено, что если маленькую порцию осадка перенести в свежий виноградный сок, то сок очень быстро начинает бродить, теряя при этом сладкий вкус, и накапливает опьяняющее вещество — спирт. Еще Левенгук в 1680 г. разглядел в этом осадке большие (по сравнению с бактериями) округлые клетки. Но только Пастер окончательно доказал, что превращение сахара виноградного сока в спирт осуществляется одноклеточными грибками-дрожжами.
Каким же образом дрожжевая клетка превращает сахар в спирт?
Бактерии, актиномицеты и грибки, в том числе и дрожжи, обладают способностью продуцировать особые вещества, растворённые в клеточном соке и называемые ферментами, или энзимами. Эти вещества обладают свойствами химических катализаторов, т. е. они ускоряют, не входя в состав образующихся продуктов, химические реакции. Именно благодаря наличию в клетке ферментов микробы и производят самую разнообразную работу по превращению различных веществ в природе. Ферменты отличаются огромной активностью и специфичностью своего действия: достаточно весьма малых количеств фермента, чтобы превращение вещества пошло в строго определённом направлении. Поразительна специфичность энзима: из одного и того же вещества, например, сахара, в зависимости от воздействия на него того или другого энзима получаются самые различные соединения. Микробы весьма богаты самыми разнообразными энзимами.
Все превращения азотистых и углеродсодержащих веществ, о которых мы говорили в предыдущей главе, осуществляются при помощи различных энзимов. Существуют энзимы, расщепляющие белки, клетчатку, энзимы, окисляющие различные соединения, и т. д. Точно так же и в дрожжевых клетках имеется бродильный энзим, так называемая зимаза, осуществляющий спиртовое брожение сахара, т. е. распад его на винный спирт и углекислоту. Энзим может быть выделен из клетки в чистом виде. Впервые это было осуществлено русским учёным-женщиной М. М. Манассеиной в 1871 г. Открытие это неправильно приписывается зарубежному учёному Эд. Бухнеру (1896 г.). После растирания с песком Манассеиной удалось получить из дрожжевых клеток зимазу, которая воспроизводила спиртовое брожение вне клетки. Но не следует думать (как это себе представляют многие зарубежные учёные), что микробная клетка является лишь мешком, наполненным энзимами. Работа энзимов в клетке тесно связана со всей клеточной организацией, поэтому в живой клетке все химические реакции идут с поразительной согласованностью и направленностью. В живой клетке энзимы не только разлагают вещества, но и созидают новые. Каждый энзим одновременно является и разрушителем и строителем. А внеклеточное брожение, по образному выражению академика Костычева, можно сравнить с работой разрушенного химического завода, где исчезает стройный порядок последовательности хода процесса.