Удивительная химия - Леенсон Илья Абрамович. Страница 44
Испускают свет не только морские организмы. Светятся гнилушки и пни в лесу, яркий мерцающий свет испускают самцы светляков. Это примеры биолюминесценции — свечения в живых организмах. Причина всех описанных явлений — химические реакции, идущие с выделением энергии. Обычно в ходе химических реакций энергия выделяется в виде тепла, но в редких случаях часть химической энергии переходит в световую. В живых организмах реакции, в том числе и с выделением света, регулируются особыми молекулами — ферментами. Давно известны и неферментативные химические реакции, в ходе которых наблюдается «холодное свечение». Еще в 1669 году немецкий алхимик из Гамбурга Хенниг Бранд (1630 — после 1710) случайно открыл белый фосфор по его свечению в темноте (рис. 6.3). Впоследствии химики выяснили, что белый фосфор легко испаряется и светятся его пары, когда они реагируют с кислородом воздуха. Это свечение подробно исследовали в 1920-х годах в Ленинградском физико-техническом институте в лаборатории Николая Николаевича Семенова (1896–1986). В результате был открыт совершенно новый класс химических реакций; за это открытие Н. Н. Семенов совместно с английским химиком Сирилом Норманом Хиншелвудом (1897–1967) был удостоен Нобелевской премии по химии.
Свечение паров фосфора, хотя и привело к важному научному открытию, не имеет практического значения. Однако химики обнаружили, что при окислении некоторых органических веществ, например, перекисью водорода, наблюдается настолько яркая хемилюминесценция, что ее можно видеть даже при дневном освещении. Это явление уже используется для производства игрушек и украшений. Их делают в виде прозрачных пластмассовых трубочек, внутри которых находится раствор органического вещества, обладающий способностью светиться при окислении, а также стеклянная ампула с перекисью водорода. Непосредственно перед «применением» продавец (или покупатель) надламывает находящуюся в пластмассовой трубочке хрупкую ампулу, что и «запускает» реакцию. Цвет свечения может быть разным — оранжевым, голубым, зеленым и т. д. — в зависимости от находящегося в растворе красителя. Чем быстрее идет реакция окисления, тем ярче свечение. Но когда реакция идет быстро, она быстро и прекращается, а с ней прекращается и свечение. Если же реакция идет медленно, то длится она, конечно, дольше, но свечение получается менее ярким (так, если смесь держать в морозильнике, то свечение заметно даже через полгода после «запуска» реакции). Обычно выбирают «золотую середину», что в данном случае означает довольно яркое (можно читать в темноте) свечение, которое затухает в течение примерно 12 часов — для карнавала или дискотеки этого вполне достаточно. Туристы, побывавшие в итальянском парке «Гардаленд» (аналог американского «Диснейленда»), рассказывают, что видели одновременно сотни светящихся украшений, сделанных в виде цветков, бабочек, жуков и других насекомых, в которых щеголяли посетители (в основном, дети) после наступления темноты. Эффект усиливался множеством усиков-световодов, передающих свет на 10–20 см от его источника — ампулы с реагентами. Зрелище впечатляющее! К сожалению, после прекращения химической реакции свечение затухает и возобновить его уже невозможно.
ХИМИКИ ИЗУЧАЮТ РАДИОАКТИВНЫЕ ПРЕВРАЩЕНИЯ
Масса — не единственное свойство, по которому можно отличить изотопы одного и того же химического элемента, этих химических «близнецов». Исследования показали, что изотопы всех элементов по своему поведению можно разделить на две группы. Одни ведут себя смирно: какими они появились на свет, такими и остались. Причем появиться они могли и много миллиардов лет назад — когда возникла Вселенная, и совсем недавно. Поведение же других изотопов химических элементов прямо противоположное: они непрерывно «меняют лицо», превращаясь в изотопы других элементов. Такие превращения принято называть радиоактивным распадом. Почему распад — понятно: «смена лица» фактически приводит к уничтожению атомов данного элемента, к их распаду. А радиоактивными эти превращения названы потому, что они сопровождаются испусканием особых лучей. Что же это за лучи?
Конец XIX века был богат на открытия, связанные с обнаружением разного рода «излучений». В 1895 году немецкий физик В. К. Рентген (1845–1923) открыл лучи, названные впоследствии его именем. Они возникали, когда быстро летящие в вакууме отрицательно заряженные частицы — электроны ударялись о препятствие. Мы уже говорили о том, что почти одновременно с открытием рентгеновских лучей появилась соответствующая аппаратура, которая сразу же нашла практическое применение, прежде всего — в медицине. Сейчас рентгеновские лучи широко используются во всем мире. Редко можно найти человека, который бы ни разу в своей жизни не побывал в рентгеновском кабинете — хотя бы для того, чтобы сделать снимок зуба; рентгеновские лучи легко проходят через мягкие ткани, но задерживаются костями и другими твердыми предметами (рис. 7.1, 7.2).
Совершенно другой тип лучей обнаружил в 1896 году французский физик Анри Антуан Беккерель (1852–1908). Эти лучи испускались «сами по себе» некоторыми редкими минералами. Выдающаяся французская исследовательница польского происхождения Мария Склодовская-Кюри (1867–1934) назвала это явление радиоактивностью. На латыни radius — «палочка, спица в колесе», а также «радиус круга, луч»; radiare — «испускать лучи, сиять»; в английском лексиконе слово radiant («излучающий») появилось еще в XV веке. То есть придуманный Кюри термин должен был означать самопроизвольное («активное») излучение некоторыми веществами. Долгое время не понимали, откуда эти лучи берутся. Потом удалось выяснить, что их испускают неустойчивые разновидности атомов обычных химических элементов. Следует отметить, что в 1903 году одна из первых Нобелевских премий по физике была присуждена А. А. Беккерелю, М. Склодовской-Кюри и ее мужу Пьеру Кюри (1859–1906) за исследование радиоактивных явлений.