Удивительная логика - Гусев Дмитрий Алексеевич. Страница 13
Третий способ преобразования простых суждений – противопоставление предикату – состоит в том, что сначала суждение подвергается превращению, а потом обращению. Например, чтобы путем противопоставления предикату преобразовать суждение Все акулы являются рыбами, надо сначала подвергнуть его превращению. Получится: Все акулы не являются не рыбами. Теперь надо совершить обращение с получившимся суждением, т. е. поменять местами его субъект акулы и предикат не рыбы. Чтобы не ошибиться, вновь прибегнем к установлению распределенности терминов с помощью круговой схемы (субъект и предикат в этом суждении находятся в отношении несовместимости) (рис. 29).
На круговой схеме видно, что и субъект, и предикат распределены (и тому, и другому термину соответствует полный круг), следовательно, мы должны сопроводить как субъект, так и предикат квантором все. После этого совершим обращение с суждением Все акулы не являются не рыбами. Получится: Все не рыбы не являются акулами. Суждение звучит непривычно, однако это – более короткая формулировка той мысли, что если какое-то существо не является рыбой, то оно никак не может быть акулой, или что все существа, которые не являются рыбами, автоматически не могут быть и акулами в том числе.
Все три операции преобразования простых суждений проще всего совершать с помощью круговых схем. Для этого надо изобразить кругами Эйлера три термина: субъект, предикат и понятие, противоречащее предикату (не-предикат). Потом следует установить их распределенность, и из получившейся схемы будут вытекать четыре суждения – одно исходное и три результата преобразований. Главное – помнить, что распределенный термин соответствует квантору все, а нераспределенный – квантору некоторые; что соприкасающиеся на схеме Эйлера круги соответствуют связке является, а несоприкасающиеся – связке не является. Например, требуется совершить три операции преобразования с суждением Все учебники являются книгами. Изобразим субъект учебники, предикат книги и не-предикат не книги круговой схемой и установим распределенность этих терминов (рис. 30).
Получившуюся круговую схему можно прочитать четырьмя способами:
• Все учебники являются книгами (исходное суждение).
• Некоторые книги являются учебниками (обращение).
• Все учебники не являются не книгами (превращение).
• Все не книги не являются учебниками (противопоставление предикату).
Рассмотрим еще один пример. Надо преобразовать тремя способами суждение Все планеты не являются звездами. Изобразим кругами Эйлера субъект планеты, предикат звезды и не-предикат не звезды. Обратите внимание на то, что понятия планеты и не звезды находятся в отношении подчинения: планета – это обязательно не звезда, но небесное тело, которое не является звездой, – это не обязательно планета. Установим распределенность этих терминов (рис. 31).
Получившуюся круговую схему можно прочитать четырьмя разными способами:
• Все планеты не являются звездами (исходное суждение).
• Все звезды не являются планетами (обращение).
• Все планеты являются не звездами (превращение).
• Некоторые не звезды являются планетами (противопоставление предикату).
Логический квадрат (Отношения между суждениями)
Простые суждения делятся на сравнимые и несравнимые.
Сравнимые (идентичные по материалу) суждения имеют одинаковые субъекты и предикаты, но могут отличаться кванторами и связками. Например, суждения Все школьники изучают математику, Некоторые школьники не изучают математику являются сравнимыми, так как у них совпадают субъекты и предикаты, а кванторы и связки различаются.
Несравнимые суждения имеют разные субъекты и предикаты. Например, суждения: Все школьники изучают математику, Некоторые спортсмены – это олимпийские чемпионы являются несравнимыми, так как субъекты и предикаты у них не совпадают.
Сравнимые суждения бывают, как и понятия, совместимыми и несовместимыми и могут находиться в различных отношениях между собой.
Совместимыми называются суждения, которые могут быть одновременно истинными. Например, суждения Некоторые люди – это спортсмены, Некоторые люди – это не спортсмены являются одновременно истинными и представляют собой совместимые суждения.
Несовместимыми называются суждения, которые не могут быть одновременно истинными: истинность одного из них обязательно означает ложность другого. Например, суждения Все школьники изучают математику, Некоторые школьники не изучают математику не могут быть одновременно истинными и являются несовместимыми (истинность первого суждения с неизбежностью приводит к ложности второго).
Совместимые суждения могут находиться в отношениях равнозначности, подчинения или частичного совпадения.
Равнозначность – это отношение между двумя суждениями, у которых и субъекты, и предикаты, и связки, и кванторы совпадают. Например, суждения Москва является древним городом, Столица России является древним городом находятся в отношении равнозначности.
Подчинение – это отношение между двумя суждениями, у которых предикаты и связки совпадают, а субъекты находятся в отношении вида и рода. Например, суждения Все растения являются живыми организмами, Все цветы (некоторые растения) являются живыми организмами находятся в отношении подчинения.
Частичное совпадение – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения Некоторые грибы являются съедобными и Некоторые грибы не являются съедобными находятся в отношении частичного совпадения. Необходимо отметить, что в этом отношении находятся только частные суждения – частноутвердительные (I) и частноотрицательные (О).
Несовместимые суждения могут находиться в отношениях противоположности или противоречия.
Противоположность – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения Все люди являются правдивыми и Все люди не являются правдивыми находятся в отношении противоположности. В этом отношении могут быть только общие суждения – общеутвердительные (Д) и общеотрицательные (Е).
Важным признаком противоположных суждений является то, что они не могут быть одновременно истинными, но могут быть одновременно ложными. Вернемся к приведенным выше суждениям и убедимся в этом: неправда, что все люди являются правдивыми, но также неправда, что все люди не являются правдивыми. Противоположные суждения могут быть одновременно ложными, потому что между ними, обозначающими какие-то крайние варианты, всегда есть третий, средний, промежуточный вариант. Если этот средний вариант будет истинным, то два крайних окажутся ложными. Между противоположными (крайними) суждениями Все люди являются правдивыми и Все люди не являются правдивыми есть третий, средний вариант Некоторые люди являются правдивыми, а некоторые не являются таковыми, который, будучи истинным суждением, обусловливает одновременную ложность двух крайних противоположных суждений.
Противоречие – это отношение между двумя суждениями, у которых предикаты совпадают, связки различны, а субъекты отличаются своими объемами, т. е. находятся в отношении подчинения (вида и рода). Например, суждения Все люди являются правдивыми и Некоторые люди не являются правдивыми находятся в отношении противоречия.