Удивительная логика - Гусев Дмитрий Алексеевич. Страница 7

1. Определение не должно быть широким, т. е. определение не должно превышать своим объемом определяемое понятие. Например, определение Солнце – это небесное тело является широким, так как определение небесное тело по объему намного больше определяемого понятия Солнце. Из приведенного определения не вполне понятно, что такое Солнце, ведь небесное тело – это и планета, и комета и т. п. В данном случае можно также сказать, что, пользуясь классическим способом определения, мы подвели определяемое понятие Солнце под родовое понятие небесное тело, но не сделали второй шаг – не указали на видовое отличие.

Примеры широких определений:

• Лошадь – это млекопитающее позвоночное животное.

• Кость – это орган, обладающий сложным строением.

• Барометр – это метеорологический измерительный прибор.

2. Определение не должно быть узким, т. е. определение не должно быть по своему объему меньше определяемого понятия. Например, определение Геометрия – это наука о треугольниках является узким. Геометрия – действительно наука о треугольниках, но не только о них, а в нашем примере определение получилось по объему меньше определяемого понятия, в результате чего из него не совсем ясно, что такое геометрия, содержание понятия не раскрывается.

Примеры узких определений:

Птица – это животное, имеющее крылья и умеющее летать.

• Революция – это крупное историческое событие, в результате которого в обществе меняется политическая власть.

• Феодализм – это общественный строй, основанный на эксплуатации.

Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, т. е. понятие и его определение должны быть равны друг другу. Вернемся к определению Астрономия – это наука о небесных телах, которое является соразмерным. В этом примере определяемое понятие астрономия и определение наука о небесных телах находятся в отношении равнозначности: астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия.

Определение является соразмерным, если между его первой частью (определяемым понятием) и второй (определением) можно поставить знак равенства (=). Если же между первой и второй частью определения ставится знак «меньше» (<) или «больше» (>), то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества.

3. В определении не должно быть круга, т. е. в нем нельзя употреблять понятия, которые являются определяемыми. Например, в определении Клеветник – это человек, который занимается клеветой, присутствует круг, поскольку понятие клеветник определяется через понятие клевета, т. е. фактически – через само себя. Если бы, услышав приведенное определение, мы спросили, что такое клевета, нам могли бы ответить: Клевета – это то, чем занимается клеветник. Присутствующий в определении круг, или тавтология (от греч. tauto – «то же самое»; logos – «слово»), приводит к тому, что содержание понятия не раскрывается и определение является ошибочным.

Однако наверняка найдутся люди, которые скажут, что из определения Клеветник – это человек, который занимается клеветой, вполне понятно, и кто такой клеветник, и что такое клевета. Они могут так утверждать только потому, что им ранее было известно значение слов клеветник и клевета. Станет ли понятно, что такое экзистенциализм из следующего кругового определения: Экзистенциализм – это философское направление XX веке, в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы! Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы!

Примеры определений, в которых есть круг:

• Творческое мышление – это мышление, которое обеспечивает решение творческих задач.

• Фильтрование – это процесс разделения какого-либо вещества с помощью специального приспособления – фильтра.

• Сверхпроводник – это вещество, обнаруживающее явление сверхпроводимости.

4. Определение не должно быть двусмысленным, т. е. в нем нельзя употреблять слова (термины) в переносном значении. Вспомним хорошо знакомое с детства определение Лев – это царь зверей. В данном определении слово царь используется в переносном значении, но у него есть и прямое значение. Получается, что в определении употребляется одно слово, а возможных значений у него два, т. е. определение является двусмысленным (вновь нарушается логический закон тождества: одно слово, два значения: 1 ? 2). Двусмысленность вполне уместна в качестве художественного приема, но в определении она недопустима, поскольку содержание понятия в данном случае не раскрывается.

Примеры двусмысленных определений:

Собака – это друг человека (двусмысленное определение).

Математика – это гимнастика ума (двусмысленное определение).

Краткость – это сестра таланта.

5. Определение не должно быть сложным и непонятным. Иначе говоря, оно должно быть коммуникабельным, т. е. понятным для своего адресата – человека, которому оно предназначено. Рассмотрим следующее определение: Энтропия – это термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу. Это определение взято не из научного доклада и не из докторской диссертации, а из учебника для студентов гуманитарных специальностей [3]. Данное определение не широкое и не узкое, в нем нет круга и двусмысленности, оно верно и с научной точки зрения. Это определение кажется безупречным с тем только исключением, что оно является сложным и непонятным, или некоммуникабельным для людей, которые не занимаются специально естественными науками, т. е. для большинства из нас. Определение должно быть понятным для того, кому оно адресовано, иначе при всей своей формальной правильности оно не будет раскрывать содержания понятия для своего адресата.

Примеры некоммуникабельных определений:

Суффикс – это выделяющаяся в составе словоформы послекорневая аффиксальная морфема.

Жизнь – это активный процесс поддержания и самовоспроизведения специфической структуры, происходящий с потреблением энергии, получаемой извне.

6. Определение не должно быть только отрицательным.

Например, определение Квадрат – это не треугольник является только отрицательным. Квадрат – это действительно не треугольник, но данное определение не раскрывает содержание понятия квадрат, ведь, указав на то, чем не является объект, обозначенный определяемым понятием, мы не сказали, чем же он является (окружность, трапеция, пятиугольник – это тоже не квадраты). Определение может быть отрицательным в том случае, когда оно дополнено положительной частью. Например, является правильным определение Квадрат – это не треугольник, а прямоугольник, у которого все стороны равны. Примеры только отрицательных определений:

Извлечение квадратного корня – это математическое действие, которое не является ни умножением, ни делением, ни возведением в степень.

Человек не является ни птицей, ни рыбой.

Транспорт бывает общественным, личным и наземным (Деление понятия)

Деление понятия – это логическая операция, которая раскрывает его объем. Принято выделять делимое понятие, результаты деления и основание деления (признак, по которому производится деление). Например, в делении Люди бывают мужчинами и женщинами (или, что то же самое: Люди делятся на мужчин и женщин) делимым является понятие люди, результаты деления – это понятия мужчины и женщины, а основание деления – пол, так как люди в нем разделены по половому признаку. В зависимости от основания деление может быть различным. Например: Люди бывают высокими, низкими и среднего роста (основание деления – рост); Люди бывают монголоидами, европеоидами и негроидами (основание деления – раса); Люди бывают учителями, врачами, инженерами и т. д. (основание деления – профессия). Иногда понятие делится дихотомически (от греч. dicha – «на две части» и tome – «разрез, сечение») по типу А и не А. Например: Люди бывают спортсменами и не спортсменами. Дихотомическое деление всегда правильное, т. е. в нем автоматически исключаются все возможные в делении ошибки, о которых речь пойдет ниже.

вернуться

3

Концепции современного естествознания. Под ред. В. Н. Лавриненко и В. П. Ратникова. – М.: ЮНИТИ, 1997. С. 264.