Принцесса или тигр - Смаллиан Рэймонд М.. Страница 6

7. Первая табличка фактически утверждает, что в обеих комнатах находятся разные обитатели (в одной — принцесса, в другой — тигр), но ничего не говорит нам о том, кто же именно в какой комнате. Если комнату I занимает принцесса, то утверждение таблички I истинно; следовательно, в комнате II должен сидеть тигр. С другой стороны, если в комнате I посажен тигр, то первая надпись оказывается ложной, откуда следует, что на самом деле обитатели обеих комнат должны быть одинаковы, и поэтому в комнате 2 также должен находиться тигр. Итак, в комнате II действительно сидит тигр. Это значит, что вторая надпись является истинной и, следовательно, принцесса должна находиться в первой комнате.

8. Предположим, что верхняя табличка «В этой комнате сидит тигр» прикреплена у дверей комнаты I. Если принцесса находится в этой комнате, то утверждение на табличке будет ложным — однако при этом нарушаются объявленные королем условия. Если же в левой комнате сидит тигр, то надпись на табличке будет истинной — условия, объявленные королем, оказываются нарушенными вновь. Поэтому ясно, что верхняя табличка не может висеть на дверях комнаты I. Значит, она должна находиться на дверях комнаты II; в свою очередь нижняя табличка должна располагаться на первой двери.

Итак, табличка, которая должна висеть на первой двери, гласит: «В обеих комнатах сидят тигры». При этом принцесса не может находиться в комнате I; ведь в противном случае левая табличка оказывается правдивой, что приводит нас к очевидному противоречию, будто бы в обеих комнатах сидят тигры. Следовательно, в комнате I сидит тигр. Отсюда сразу становится ясно, что табличка на дверях этой комнаты ложна, и поэтому в комнате II должна находиться принцесса

9. Утверждения на табличках II и III противоречат друг другу, поэтому по меньшей мере одно из них должно оказаться истинным. Поскольку по условию самое большее одна из трех табличек говорит нам правду, то первая надпись должна быть ложной, и, следовательно, принцесса находится в комнате I.

10. Поскольку табличка на дверях комнаты, где находится принцесса, говорит нам правду, то, значит, принцесса никак не может оказаться в комнате II. Если бы она находилась в комнате III, то все три исходные утверждения были бы истинными, что противоречило бы условиям задачи, согласно которым, по крайней мере, одно из трех приведенных утверждений должно быть ложным. Следовательно, принцесса находится в комнате I. (При этом табличка II утверждает правду, а табличка III лжет.)

11. Поскольку табличка на дверях комнаты, где находится принцесса, говорит нам правду, то, естественно, что принцесса не может оказаться в комнате III.

Допустим теперь, что принцесса находится в комнате II. Тогда надпись на табличке II будет истинной, и следовательно, тигр должен сидеть в комнате I, а комната III окажется пустой. Это также будет означать, что истинной является и надпись на дверях комнаты, где сидит тигр, что невозможно. Значит, принцесса должна находиться в комнате I; при этом в комнате III никого нет, а в комнате II сидит тигр.

12. Если бы король сообщил узнику, что комната VIII пуста, то у последнего не было бы никаких шансов обнаружить принцессу. Но так как узник все же сумел догадаться, где находится принцесса, то, стало быть, король сказал ему, что в комнате VIII кто-то есть.

Это позволило узнику рассуждать следующим образом.

Принцесса не может находиться в комнате VIII, поскольку если бы это было так, то надпись на табличке VIII оказалась бы верной, — сама же эта надпись утверждает, что в комнате сидит тигр; значит, это сразу приводит нас к противоречию. Таким образом, принцессы в комнате VIII нет, но так как в ней все же кто-то есть (ведь она не пуста) — следовательно, в комнате VIII должен сидеть тигр. Поскольку там находится тигр, табличка на дверях этой комнаты лжет. Наконец, если пуста комната IX, то надпись на табличке VIII должна быть верной — значит, комната IХ не может быть пустой.

Итак, в комнате IX также кто-то есть. Это не может быть принцесса, поскольку тогда табличка на дверях комнаты оказалась бы верной — отсюда сразу следовало бы, что в комнате сидит тигр. Значит, на табличке IX записано ложное утверждение. Далее, если бы неверной оказалась табличка VI, то табличка IX утверждала бы правду. На самом деле это не так, и, следовательно, то, что написано на табличке VI, — истинно.

Далее, поскольку табличка VI верна, это означает, что на табличке III написана ложь. Единственная возможность, чтобы фраза на табличке III оказалась ложной, соответствует случаю, когда табличка V ложна, а табличка VII истинна. Поскольку табличка V ложна, то ложными будут также утверждения на табличках II и IV. Кроме того, поскольку табличка V является ложной, табличка I должна быть истинной. Теперь известно, на каких табличках написана, правда, а на каких ложь, а именно:

I- правда

II- ложь

III- ложь

IV- ложь

V- ложь

VI- правда

VII- правда

VIII- ложь

IX- ложь

Ясно, что принцесса может находиться только в комнатах I VI и VII, поскольку таблички на дверях […] Так как табличка I утверждает правду, то принцесса не может оказаться в комнате VI, наконец, поскольку истинна табличка VII, принцесса не может находиться и в комнате I. Следовательно, принцесса — в комнате VII.

Лечебница доктора Смолля и профессора Перро

Однажды инспектора Крейга из Скотланд-Ярда срочно откомандировали во Францию для проверки одиннадцати лечебниц для умалишенных, где, по слухам, дела обстояли не слишком-то хорошо. В каждой из лечебниц единственными обитателями были пациенты и врачи — причем последние составляли весь персонал этих медицинских учреждений. Каждый обитатель лечебницы, будь то пациент или доктор, либо находился в здравом уме, либо был лишен рассудка. Кроме того, нормальные обитатели были абсолютно нормальны и на сто процентов уверены в том, что они говорят, они твердо знали, что все истинные утверждения действительно являются истинными, а все ложные — на самом деле ложными. В то же время безумные обитатели лечебниц придерживались совершенно противоположных представлений: все истинные утверждения они считали ложными, а все ложные утверждения — истинными. Наконец, надо полагать, что все обитатели лечебниц во всех случаях остаются честными — они всегда верят в то, что говорят.

1. Первая лечебница.

В первой же лечебнице, которую посетил Крейг, он беседовал по очереди с двумя обитателями, которых звали Джонс и Смит.

— Не могли бы вы рассказать мне, — обратился инспектор к Джонсу, — что вам известно о мистере Смите?

— Вам следовало бы называть его доктор Смит, — поправил Джонс. — Ведь это один из врачей нашей больницы.

Позже Крейг задал Смиту вопрос:

— Что вам известно о Джонсе? Он здесь пациент или доктор?

— Он пациент, — ответил Смит.

Поразмыслив некоторое время, инспектор смекнул, что дела в этой лечебнице и в самом деле идут не блестяще: либо один из докторов лишился рассудка и, значит, ему не следует продолжать работу в больнице умалишенных, либо, что еще хуже, один из пациентов является нормальным человеком и вообще не должен находиться здесь.

Как Крейг догадался об этом?

2. Во второй лечебнице.

В другой лечебнице, которую посетил Крейг, один из ее обитателей сообщил инспектору нечто такое, из чего тот смог сделать вывод, что говоривший был пациентом, но во вполне здравом уме, и потому его нужно было выпустить оттуда. Инспектор сразу же предпринял шаги для его освобождения. Не могли бы вы предложить пример такого сообщения?

3. В третьей лечебнице.

В следующей лечебнице некий обитатель высказал утверждение, из которого Крейг смог сделать вывод, что тот является лишившимся рассудка доктором.

Не могли бы вы сформулировать такое утверждение?