Why is Sex Fun?: the evolution of human sexuality - Diamond Jared Mason. Страница 25

Physiologists and many other researchers on aging tend to search for a single all-encompassing explanation of aging. Popular explanations hypothesized in recent decades have invoked the immune system, free radicals, hormones, and cell division. In reality, though, all of us over forty know that everything about our bodies gradually deteriorates, and not just our immune systems and our defenses against free radicals. Although I have had a less stressful life and better medical care than most of the world's nearly six billion people, I can still tick off the aging processes that have already taken their toll on me by age fifty-nine: impaired hearing at high pitch, failure of my eyes to focus at short distances, less acute senses of smell and taste, loss of one kidney, tooth wear, less flexible fingers, and so on. My recovery from injuries is already slower than it used to be: I had to give up running because of recurrent calf injuries, I recently completed a slow recovery from a left elbow injury, and now I have just injured the tendon of a finger. Ahead of me, if the experience of other men is any guide, lies the familiar litany of complaints, including heart disorders, clogged arteries, bladder trouble, joint problems, prostate enlargement, memory loss, colon cancer, and so on. All that deterioration is what we mean by aging.

The basic reasons behind this grim litany are easily understood by analogy to human-built structures. Animal bodies, like machines, tend to deteriorate gradually or become acutely damaged with age and use. To combat those tendencies, we consciously maintain and repair our machines. Natural selection ensures that our body unconsciously maintains and repairs itself.

Both bodies and machines are maintained in two ways. First, we repair a part of a machine when it is acutely damaged. For example, we fix a car's punctured tire or bashed-in fender, and we replace its brakes or tires if they become damaged beyond repair. Our body similarly repairs acute damage. The most visible example is wound repair when we cut our skin, but molecular repair of damaged DNA and many other repair processes go on invisibly inside us. Just as a ruined tire can be replaced, our body has some capac-ity to regenerate parts of damaged organs such as by mak-ing new kidney, liver, and intestinal tissue. That capacity for regeneration is much better developed in many other animals. If only we were like starfish, crabs, sea cucumbers, and lizards, which can regenerate their arms, legs, intestines, and tail, respectively!

The other type of upkeep of machines and bodies is regular or automatic maintenance to reverse gradual wear, regardless of whether there has been any acute damage. For example, at times of scheduled maintenance we change our car's motor oil, spark plugs, fan belt, and ball bearings. Similarly, our body constantly grows new hair, replaces the lining of the small intestine every few days, replaces our red blood cells every few months, and replaces each tooth once in our lifetime. Invisible replacement goes on for the individual protein molecules that make up our bodies.

How well you maintain your car, and how much money or resources you put into its maintenance, strongly influence how long it lasts. The same can be said of our bodies, not only with respect to our exercise programs, visits to the doctor, and other conscious maintenance, but also with respect to the unconscious repair and maintenance that our bodies do on themselves. Synthesizing new skin, kidney tissue, and proteins uses up a lot of biosynthetic energy. Animal species vary greatly in their investment in self-maintenance, hence in the rate at which they senesce. Some turtles live for over a century. Laboratory mice, living in cages with abundant food and no predators or risks, and receiving better medical care than any wild turtle or the vast majority of the world's people, inevitably become decrepit and die of old age before their third birthday. There are aging differences even among us humans and our closest relatives, the great apes. Well-nourished apes living in the safety of zoo cages and attended by veterinarians rarely (if ever) live past age sixty, while white Americans exposed to much greater danger and receiving less medical attention now live to an average of seventy-eight years for men, eighty-three years for women. Why do our bodies unconsciously take better care of themselves than do apes' bodies? Why do turtles senesce so much more slowly than mice?

We could avoid aging entirely and (barring accidents) live forever if we went all out for repair and changed all the parts of our bodies frequently. We could avoid arthritis by growing new limbs, as crabs do, avoid heart attacks by periodically growing a new heart, and minimize tooth decay by regrowing new teeth five times (as elephants do, instead of just once, as we do). Some animals thus make a big investment in certain aspects of body repair, but no animal makes a big investment in all aspects, and no animal avoids aging entirely.

Analogy to our cars again makes the reason obvious: the expense of repair and maintenance. Most of us have only limited amounts of money, which we are obliged to budget. We put just enough money into car repair to keep our car running as long as it makes economic sense to do so. When the repair bills get too high, we find it cheaper to let the old car die and buy a new one. Our genes face a similar tradeoff between repairing the old body that contains the genes and making new containers for the genes (that is, babies). Resources spent on repair, whether of cars or of bodies, eat away at the resources available for buying new cars or making babies. Animals with cheap self-repair and short life spans, like mice, can churn out babies much more rapidly than can expensive-to-maintain, long-lived animals like us. A female mouse that will die at the age of two, long before we humans achieve fertility, has been producing five babies every two months since she was a few months old.

That is, natural selection adjusts the relative invest ments in repair and reproduction so as to maximize the transmission of genes to offspring. The balance between re-pair and reproduction differs between species. Some species stint on repair and churn out babies quickly but die early, like mice. Other species, like us, invest heavily in repair, live for nearly a century, and can produce a dozen babies in that time (if you are a Hutterite woman), or over a thousand babies (if you are Emperor Moulay the Bloodthirsty). Your annual rate of baby production is lower than the mouse's (even if you are Moulay) but you have more years in which to do it.

It turns out that an important evolutionary determinant of biological investment in repair-hence of life span under the best possible conditions-is the risk of death from accidents and bad conditions. You don't waste money maintaining your taxi if you are a taxi driver in Teheran, where even the most careful taxi driver is bound to suffer a major fender-bender every few weeks. Instead, you save your money to buy the inevitable next taxi. Similarly, animals whose lifestyles carry a high risk of accidental death are evolutionarily programmed to stint on repair and to age rapidly, even when living in the well-nourished safety of a laboratory cage. Mice, subject to high rates of predation in the wild, are evolutionarily programmed to invest less in repair and to age more rapidly than similar-sized caged birds that in the wild can escape predators by flying. Turtles, protected in the wild by a shell, are programmed to age more slowly than other reptiles, while porcupines, protected by quills, age more slowly than mammals comparable in size.

That generalization also fits us and our ape relatives. Ancient humans, who usually remained on the ground and defended themselves with spears and fire, were at lower risk of death from predators or from falling out of a tree than were arboreal apes. The legacy of the resultant evolutionary programming carries on today in that we live for several decades longer than do zoo apes living under comparable conditions of safety, health, and affluence. We must have evolved better repair mechanisms and decreased rates of senescence in the last seven million years, since we parted company from our ape relatives, came down out of the trees, and armed ourselves with spears and stones and fire.