Why is Sex Fun?: the evolution of human sexuality - Diamond Jared Mason. Страница 4

This example illustrates the dependence of evolved sexual strategies on both ecological parameters and the parameters of a species' biology, both of which vary among species. Sexual cannibalism in spiders and mantises is favored by the ecological variables of low population densities and low encounter rates, and by the biological variables of a female's capacity to digest relatively large meals and to increase her egg output considerably when well nourished. Ecological parameters can change overnight if an individual colonizes a new type of habitat, but the colonizing individual carries with it a baggage of inherited biological attributes that can change only slowly, through natural selection. Hence it is not enough to consider a species' habitat and lifestyle, design on paper a set of sexual characteristics that would be well matched to that habitat and lifestyle, and then be surprised that those supposedly optimal sexual characteristics do not evolve. Instead, sexual evolution is severely constrained by inherited commitments and prior evolutionary history.

For example, in most fish species a female lays eggs and a male fertilizes those eggs outside the female's body, but in all placental mammal species and marsupials a female gives birth to live young rather than to eggs, and all mammal species practice internal fertilization (male sperm injected into the female's body). Live birth and internal fertilization involve so many biological adaptations and so many genes that all placental mammals and marsupials have been firmly committed to those attributes for tens of millions of years. As we shall see, these inherited commitments help explain why there is no mammal species in which parental care is provided solely by the male, even in habitats where mammals live alongside fish and frog species whose males are the sole providers of parental care.

We can thus redefine the problem posed by our strange sexuality. Within the last seven million years, our sexual anatomy diverged somewhat, our sexual physiology further, and our sexual behavior even more, from those of our closest relatives, the chimpanzees. Those divergences must reflect a divergence between humans and chimpanzees in environment and lifestyle. But those divergences were also limited by inherited constraints. What were the lifestyle changes and inherited constraints that molded the evolution of our weird sexuality?

CHAPTER 2. THE BATTLE OF THE SEXES

In the preceding chapter we saw that our effort to understand human sexuality must begin by our distancing ourselves from our warped human perspective. We're exceptional animals in that our fathers and mothers often remain together after copulating and are both involved in rearing the resulting child. No one could claim that men's and women's parental contributions are equal: they tend to be grossly unequal in most marriages and societies. But most fathers make some contribution to their children, even if it's just food or defense or land rights. We take such contributions so much for granted that they're written into law: divorced fathers owe child support, and even an unwed mother can sue a man for child support if genetic testing proves that he is her child's father.

But that's our warped human perspective. Alas for sexual equality, we're aberrations in the animal world, and especially among mammals. If orangutans, giraffes, and most other mammal species could express their opinion, they would declare our child support laws absurd. Most male mammals have no involvement with either their offspring or their offspring's mother after inseminating her; they are too busy seeking other females to inseminate. Male animals in general, not just male mammals, provide much less parental care (if any) than do females.

Yet there are quite a few exceptions to this chauvinist pattern. In some bird species, such as phalaropes and Spotted Sandpipers, it's the male that does the work of incubating the eggs and rearing the chicks, while the female goes in search of another male to inseminate her again and to rear her next clutch. Males of some fish species (like seahorses and sticklebacks) and some amphibian males (like midwife toads) care for the eggs in a nest or in their mouth, pouch, or back. How can we explain simultaneously this general pattern of female parental care and also its numerous exceptions?

The answer comes from the realization that genes for behavior, as well as for malaria resistance and teeth, are subject to natural selection. A behavior pattern that helps individuals of one animal species pass on their genes won't necessarily be helpful in another species. In particular, a male and female that have just copulated to produce a fertilized egg face a “choice” of subsequent behaviors. Should that male and female both leave the egg to fend for itself and set to work on producing another fertilized egg, copulating either with the same partner or with a different partner? On the one hand, a time-out from sex for the purpose of parental care might improve the chances of the first egg surviving. If so, that choice leads to further choices: both the mother and the father could choose to provide the parental care, or just the mother could choose to do so, or just the father could. On the other hand, if the egg has a one-in-ten chance of surviving even with no parental care, and if the time you'd devote to tending it would alternatively let you produce 1,000 more fertilized eggs, you'd be host off leaving that first egg to fend for itself and going on to produce more fertilized eggs.

I've referred to these alternatives as “choices”. That word may seem to suggest that animals operate like human (Incision-makers, consciously evaluating alternatives and finally choosing the particular alternative that seems most likely to advance the animal's self-interest. Of course, that's not what happens. Many of the so-called choices actually are programmed into an animal's anatomy and physiology. For example, female kangaroos have “chosen” to have a pouch that can accommodate their young, but male kangaroos have not. Most or all of the remaining choices are ones that would be anatomically possible for either sex, but animals have programmed instincts that lead them to provide (or not to provide) parental care, and this instinctive “choice” of behavior can differ between sexes of the same species. For example, among parent birds, both male and female albatrosses, male but not female ostriches, females but not males of most hummingbird species, and no brush turkeys of either sex are instinctively programmed to bring food to their chicks, although both sexes of all of these species are physically and anatomically perfectly capable of doing so.

The anatomy, physiology, and instincts underlying parental care are all programmed genetically by natural selection. Collectively, they constitute part of what biologists term a reproductive strategy. That is, genetic mutations or recombinations in a parent bird could strengthen or weaken the instinct to bring food to the chicks and could do so differently in the two sexes of the same species. Those instincts are likely to have a big effect on the number of chicks that survive to carry on the parent's genes. It's obvious that a chick to which a parent brings food is more likely to survive, but we shall also see that a parent that forgoes bringing food to its chicks thereby gains other increased chances to pass on its genes. Hence the net effect of a gene that causes a parent bird instinctively to bring food to its chicks could be either to increase or to decrease the number of chicks carrying on the parent's genes, depending on ecological and biological factors that we shall discuss.

Genes that specify the particular anatomical structures or instincts most likely to ensure the survival of offspring bearing the genes will tend to increase in frequency. This statement can be rephrased: anatomical structures and instincts that promote survival and reproductive success tend to become established (genetically programmed) by natural selection. But the need to make wordy statements such as these arises very often in any discussion of evolutionary biology. Hence biologists routinely resort to anthropomorphic language to condense such statements-for example, they say that an animal “chooses” to do something or pursues a certain strategy. This shorthand vocabulary should not be misconstrued as implying that animals make conscious calculations.