Век криминалистики - Торвальд Юрген. Страница 101

В конце концов он нашел такого консультанта прежде всего в лице известного далеко за пределами Парижа профессора судебной медицины Деробера. С его помощью он узнал, что методу обнаружения мышьяка в костях или волосах с помощью их радиоактивности, бесспорно, принадлежит большое будущее, а главное - осознал, о чем вообще идет речь применительно к этому методу.

В обычном состоянии мышьяк не бывает радиоактивным, то есть не выделяет никаких лучей. Однако его можно сделать радиоактивным, если поместить в атомный реактор и там обстрелять нейтронами - крохотными, электрически не заряженными атомными частицами. Последние улавливаются нормальными атомами мышьяка и превращают его в испускающий лучи элемент, чье излучение (как и любое иное радиоактивное излучение) можно измерить. Если на содержание мышьяка исследуются волосы, то, значит, их тоже следует поместить в

[261]

атомный реактор. И если в них имеется мышьяк, он превратится в радиоактивный и его излучение можно будет измерить. Имеются три различных вида излучения, которое исходит от всякого радиоактивного элемента: альфа-, бета- и гамма-лучи. При первых двух видах речь идет об излучении, в ходе которого частицы из распадающихся ядер атомов выбрасываются в пространство. При гамма-излучении, наоборот, речь идет о жестких рентгеновских лучах. В то время как при альфа- и бета-излучениях число выброшенных частиц и их скорость можно измерить, при гамма-излучении измеряются интенсивность гамма-лучей и их частота. В ходе опытов, при которых надо обнаружить мышьяковое излучение в волосах, следует пользоваться прежде всего бета-излучением. Чтобы установить количество имеющегося мышьяка, одновременно кладут в тот же реактор контрольное количество мышьяка, вес которого точно определен, также делают его радиоактивным и измеряют его бета-излучение. Путем сравнения результатов измерения можно точно установить величину содержания мышьяка в волосах. Если, к примеру, известное количество мышьяка показало на счетчике Гейгера - Мюллера 1000 единиц, а неизмеренное количество мышьяка - 1500, то неизмеренное количество мышьяка в полтора раза больше, чем контрольное количество.

Трудность этого способа в настоящее время коренится в том, чтобы определить, как долго вещество, в котором ищут мышьяк, должно оставаться в атомном реакторе под обстрелом нейтронов. Для посторонних, в том числе и для Готра, поначалу не было ничего более странного, чем единицы измерения быстрого распада атомов - период полураспада. Под ним понималось время, в течение которого распадается половина атомов какого-либо элемента. У разных элементов оно неодинаково. У радиоактивного мышьяка, например, оно равно 26,5 часа, а это значит, что в течение 26,5 часа распадается половина его атомов. Из оставшейся половины в следующие 26,5 часа распадается опять-таки половина и так вплоть до окончательного превращения в неизлучающий элемент.

Если бы мы захотели вновь вернуть веществу радиоактивность и вызвать его излучение, следовало бы с помощью периода полураспада вычислить наиболее благоприятный отрезок времени, необходимый для того, чтобы в должной мере "зарядить" соответствующее вещество в атомном реакторе. Для мышьяка к тому времени было доказано, что периода его полураспада, то есть 26,5 часа нахождения в реакторе, вполне достаточно для последующего измерения.

Но после этого тотчас же возникла новая проблема. Человеческие волосы, в которых ищут мышьяк, от природы содержат некоторое число других элементов, которые вследствие помещения в атомный реактор тоже могут стать радиоактивными. Их излучение должно мешать измерению мышьяка и при

[262]

известных обстоятельствах вести к полностью искаженным показателям. Скажем, волосы содержат углерод, кислород и водород, а также многочисленные следы таких элементов, как кальций, медь, серебро, калий, магний или натрий. Их радиоактивное излучение не является существенной помехой для измерения мышьяка, поскольку их период полураспада сильно отличается от свойственного мышьяку. Магний, например, распадается так быстро, что через два часа у него исчезает всякое излучение. Кальций в свою очередь имеет период полураспада, равный 164 дням, что, как видим, выходит далеко за пределы того времени, в течение которого измеряется излучение мышьяка. Опасность грозила со стороны других элементов, чей период полураспада был близок к периоду полураспада мышьяка, как, например, натрия с его 18 часами или калия с его 12,5 часа. Опасности, которые при этом грозят, не преодолены до сих пор. Их научились избегать лишь с помощью выше упоминавшегося наиболее благоприятного отрезка времени нахождения в атомном реакторе. В первую очередь, однако, занялись опытами по удалению мешающих элементов химическим путем из содержащих мышьяк волос до того, как начнут измерять излучение мышьяка. Извлеченные из атомного реактора волосы обрабатывали химическими реактивами, такими, как соляная кислота и сероводород, осаждающими натрий, калий и иные вещества, о которых шла речь.

Для Готра знание этих основ, как бы интересны и поучительны они ни были, означало лишь прелюдию. Начиная с того момента, когда он узнал, что радиоактивный анализ, или, как его позже назвали окончательно, нейтронно-активационный анализ мышьяка, все еще связан с трудностями и имеет неразрешенные проблемы, росла его надежда на то, что он сможет уличить Гриффона в какой-нибудь небрежности, ошибке, поспешном выводе - будь они даже ничтожно малы. И ему действительно недолго оставалось ждать исполнения этой надежды.

Профессор Деробер обратил его внимание на то, что Гриффон, несомненно, совершил ошибку, которая относится к числу кардинальных ошибок из тех, какую только может совершить любой токсиколог. Неважно, что именно толкнуло его на это, легкомыслие или же честолюбивое стремление благодаря делу Беснар навсегда связать развитие радиоактивного метода со своим именем, - во всяком случае, он не стал ожидать окончания стадии разработки и испытания нового метода. Он поместил волосы Леона Беснара под нейтронное облучение в атомный реактор не на 26,5 часа, а лишь на 15. Из-за этого, бесспорно, "подскочило", как выразился Деробер, опасное для точных измерений излучение натрия. Правда, это не вело неизбежно к неправильным результатам, но все-таки создавало возможность ошибок.