Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл. Страница 19

2/3 ? 4/5 = 2/3 х 5/4 = 10/12

1/2 ? 5/9 = 1/2 х 9/5 = 9/10

УПРАЖНЕНИЕ: ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ

Теперь ваша очередь. Поделите эти дроби.

1. 2/5 ? 1/2

2. 1/3 ? 6/5

3. 2/5 ? 3/5

Сокращение обыкновенных дробей

Дроби можно рассматривать как маленькие задачки на деление. Например, 6/3 то же самое, что и 6 ? 3 = 2. Дробь 1/4 то же самое, что и 1 ? 4 (или 0,25 в десятичной форме). Известно, что если умножить любое число на 1, то это число не изменится.

Например, 3/5 = 3/5 х 1. Но если заменить 1 дробью 2/2, то получим 3/5 = 3/5 х 1 = 3/5 х 2/2 = 6/10. Следовательно, 3/5 = 6/10.

По такому же принципу, заменив 1 дробью 3/3, получим 3/5 = 3/5 х 3/3 = 9/15. Другими словами, если мы умножаем числитель и знаменатель на одно и то же число, то получаем дробь, равную исходной.

Вот еще пример:

2/3 = 2/3 х 5/5 = 10/15

Верно и то, что, деля числитель и знаменатель на одинаковое число, мы получаем дробь, равную исходной.

Например:

4/6 = 4/6 ? 2/2 = 2/3

25/35 = 25/35 ? 5/5 = 5/7

Это сокращение дроби.

УПРАЖНЕНИЕ: СОКРАЩЕНИЕ ДРОБЕЙ

Найдите дробь со знаменателем 12, равную дробям, представленным ниже.

1. 1/3 2. 5/6 3. 3/4 4. 5/2

Сокращение дробей.

5. 8/10 6. 6/15 7. 24/36 8. 20/36

Сложение дробей

Это действие можно считать простым, когда знаменатели равны. В этом случае складываются числители и сохраняется прежний знаменатель.

Например:

3/5 + 1/5 = 4/5; 4/7 + 2/7 = 6/7

Иногда можно упростить ответ. Например:

1/8 + 5/8 = 6/8 = 3/4

УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С РАВНЫМИ ЗНАМЕНАТЕЛЯМИ)

1. 2/9 + 5/9

2. 5/12 + 4/12

3. 5/18 + 6/18

4. 3/10 + 3/10

Более коварный случай — различные знаменатели. Когда знаменатели не равны, нужно заменить исходные дроби дробями с равными знаменателями.

Например, сложите

1/3 + 2/15

Заметим, что

1/3 = 5/15

Поэтому

1/3 + 2/15 = 5/15 + 2/15 = 7/15

При сложении

1/2 + 7/8

Замечаем, что

1/2 = 4/8

Тогда

1/2 + 7/8 = 4/8 + 7/8 =11/8

При сложении

1/3 + 2/5

Видим, что

1/3 = 5/15 и 2/5 = 6/15

В итоге

1/3 + 2/5 = 5/15 + 6/15 = 11/15

УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С НЕРАВНЫМИ ЗНАМЕНАТЕЛЯМИ)

1. 1/5 + 1/10 2. 1/6 + 5/18 3. 1/3 + 1/5

4. 2/7 + 5/21 5. 2/3 + 3/4 6. 3/7 + 3/5 7. 2/11 + 5/9

Вычитание дробей

Вычитание дробей похоже на их сложение. Мы покажем это действие на примерах и обеспечим вас тренировочными упражнениями.

2/5 — 2/5 = 1/5; 4/7 — 2/7 = 2/7; 5/8 — 1/8 = 4/8 = 1/2

1/3 /2/15 = 5/15 — 2/15 = 3/15 = 1/5

7/8 — 1/2 = 7/8 — 4/8 = 3/8

1/2 — 7/8 = 4/8 — 7/8 = -3/8; 2/7 — 1/4 = 8/28 — 7/28 = 1/28

2/3 — 5/8 = 16/24 — 15/24 = 1/24

УПРАЖНЕНИЕ: ВЫЧИТАНИЕ ДРОБЕЙ

1. 8/11 — 3/11 2. 12/7 — 8/7 3. 13/18 — 5/18

4. 4/5 — 1/15 5. 9/10 — 3/5 6. 3/4 — 2/3

7. 7/8 — 1/16 8. 4/7 — 2/5 9. 8/9 — 1/2

Глава 5

Искусство приближенной оценки

До сих пор вы совершенствовали ментальные техники, необходимые для получения точных ответов в математических задачах. Однако часто бывает достаточно приблизительной оценки решения. Скажем, вы получаете расценки различных кредиторов рефинансирования кредита за ваш дом. Все, что вам действительно понадобится на данном этапе сбора информации, — это приблизительно оценить размер ежемесячного платежа. Или, скажем, вы оплачиваете счет в ресторане вместе с компанией друзей и не хотите вычислять в нем долю каждого до последней копейки. Методы приближенной оценки, описанные в данной главе, сделают обе эти задачи (и многие другие аналогичные) вполне решаемыми. Сложение, вычитание, деление и умножение — все поддается приближенной оценке. Как обычно, мы будем выполнять расчеты слева направо.

ПРИБЛИЖЕННАЯ ОЦЕНКА В СЛОЖЕНИИ

Приближенная оценка — хороший способ облегчить себе жизнь, когда при решении задачи список чисел для запоминания становится слишком длинным. Трюк сводится к округлению исходных чисел в бoльшую или меньшую сторону.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _197.jpg

* * *

Джордж Биддер: инженер «калькулятор»

У англичан тоже была своя когорта мастеров молниеносных вычислений. Например, устные выступления Джорджа Биддера (1806–1878), уроженца Девоншира, производили на зрителей неизгладимое впечатление. Как и большинство математических талантов, Биддер увлекся арифметическими задачами, еще будучи мальчишкой, и учился счету, сложению, вычитанию, умножению и делению в процессе игры с мраморными шариками. На гастроли со своим отцом юный Биддер отправился в возрасте девяти лет.

Почти ни один из задаваемых вопросов не был для него сложным. «Если Луна находится на расстоянии 123 256 миль от Земли, а звук движется со скоростью четыре мили в минуту, сколько времени понадобится звуку для путешествия с Земли на Луну?» Молодой Биддер, сморщив ненадолго в раздумье лоб, выпалил: «Двадцать один день, девять часов, тридцать четыре минуты». (Сегодня-то мы знаем, что это расстояние чуть ближе к 240 000 милям, а звук не может перемещаться через вакуум.) В десять лет Биддер мысленно извлек квадратный корень из 119 550 66 121, получив ответ 345 761 всего за 30 секунд. В 1818 году Биддер и молниеносный вычислитель из США Зера Колберн сошлись в ментальной счетной дуэли, в которой Биддер, по-видимому, «численно» превзошел Колберна.

На волне славы Джордж Биддер поступил в университет Эдинбурга и впоследствии стал одним из наиболее уважаемых инженеров в Англии. В парламентских дебатах по поводу железнодорожных конфликтов Биддер часто выступал в качестве свидетеля, от чего его оппонентов бросало в дрожь. Кто-то сказал: «Природа наделила его определенными качествами, которые лишали его соперников справедливого положения».

В отличие от Колберна, покинувшего семейство молниеносных вычислителей в возрасте двадцати лет, Биддер сохранял свой статус на протяжении всей жизни. Так, в 1878 году, незадолго до смерти, Биддер рассчитал число световых волн, попадающих в глаз за одну секунду, основываясь на том, что существует 36 918 волн красного света на дюйм и что свет передвигается со скорость примерно 190 тысяч миль в секунду.

* * *

Обратите внимание: мы округлили первое число в бoльшую сторону до ближайшей тысячи, а второе — в меньшую, тоже до ближайшей тысячи. Так как точный ответ равен 14 186, погрешность относительно мала.

Если хотите получить более точный ответ, вместо того чтобы округлять в сторону ближайшей тысячи, округляйте в сторону ближайшей сотни.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _198.jpg

Ответ лишь на 14 единиц отличается от точного ответа: относительная погрешность меньше чем 0,1 %. Вот это я называю отличной приближенной оценкой!