Огненный шар. Повести и рассказы - Немцов Владимир. Страница 46

На передней стенке телекамеры есть объектив, похожий на объектив фотографического аппарата. Через него изображение ярко освещенного артиста переносится на мозаику из фотоэлементов, как на матовое стекло фотоаппарата. А так как фотоэлементов на мозаичной пластинке миллионы, то изображение здесь разбивается на миллионы точек.

Что же получается дальше? Малютки фотоэлементы, на которые попал свет, заряжаются положительным электричеством. Чем сильнее луч света, тем больше заряд. На всяком изображении есть более и менее светлые места. Значит, и электрические заряды в фотоэлементах окажутся неодинаковыми: в одних они будут больше, в других меньше. В некоторых фотоэлементах заряды совсем не появятся, потому что на них приходятся темные места изображения.

Таким образом, обычное видимое изображение на нашей мозаике превратилось в электрические заряды. Теперь их можно передавать дальше.

В противоположном, узком конце иконоскопа помещается трубочка — катод. Она накаливается электрическим током, и из нее вылетает множество невидимых отрицательных электрических частиц — электронов. Специальные устройства заставляют электроны собираться в очень тонкий луч. Движением этого луча управляют: его заставляют бегать по рядам фотоэлементов, или, как их называют, по строчкам, по мозаике. Электронный луч как бы штрихует поверхность мозаики невидимым карандашом. Добежит до края, возвращается обратно и снова чертит строчку.

На пути его попадаются освещенные фотоэлементы. Ты помнишь, что у них положительный заряд. Электронный луч их разряжает. В трубке иконоскопа появляются разрядные электрические токи. Путь для них уже приготовлен — в усилитель. Двадцать пять раз за одну секунду обегает электронный луч мозаику. За это время он успевает двадцать пять раз ощупать фотоэлемент на строчке, а строчек этих немало — шестьсот двадцать пять.

Лучу надо торопиться. Ведь пока он проверяет нижние строчки, на верхних могут появиться новые заряды. Так оно и бывает. Если крошечный элемент все время освещен, то после прохождения луча он опять заряжается.

Но артист перед камерой непрерывно двигается, и поэтому освещаются то одни, то другие точки мозаики. Вот артист прищурился, и сразу тысячи фотоэлементов мозаики зарядились — на них упал свет: веки закрыли темный зрачок глаз. Артист своей мимикой управляет токами в иконоскопе.

Ты уже понял, что изображение артиста передается не сразу, а отдельными точками, притом по порядку, по строчкам — следом за бегущим лучом, который заставляет фотоэлементы посылать сигналы — разрядные токи.

Эти сигналы еще совсем слабенькие. Но вот они попадают в радиолампы усилителей и становятся сильнее. Усиленные сигналы подаются по кабелю на радиостанцию, а оттуда летят в пространство. Одновременно, но уже на другой радиоволне передается звук.

На крышах домов стоят антенны, похожие на букву «Т». От антенны внутрь дома, к телевизору, тянется тонкий специальный кабель. Его называют высокочастотным.

Антенна ловит сигналы телевизионной передачи; по кабелю они устремляются в телевизор.

Телевизор — аппарат сложный; он гораздо сложнее обычного радиоприемника. В телевизоре около двух десятков радиоламп, а иногда и того больше. Кроме ламп, в нем еще есть трубка, похожая на знакомый уже тебе иконоскоп. В узком конце ее помещается катод. Внутренняя поверхность дна колбы покрыта специальным составом.

Дно колбы — это прозрачный экран телевизора.

Вот оно, серебряное блюдечко из старинной сказки! Пройдя через несколько ламп, принятые телевизором сигналы попадают в приемную трубку. Из ее катода, как в иконоскопе, вылетает поток электронов, собранных в тонкий луч. Сигналы управляют лучом: они заставляют его бегать солнечным зайчиком по экрану трубки с точно такой же скоростью, как в иконоскопе. Дошел луч до конца строчки и по сигналу телевизора сейчас же переходит на другую. Прошел весь экран — снова по сигналу бежит в левый верхний угол и начинает все сначала.

Но что же происходит на приемном экране?

Есть такие химические составы, которые светятся. Ты видел их, например, на циферблатах часов. Есть и такие химические соединения, которые можно заставить светиться от электронного луча. Вот таким составом и покрыт экран телевизора.

Электронный зайчик, бегая по экрану, как бы вырисовывает на нем светящиеся рисунки.

Тут надо оговориться. Ведь экран светится только под действием электронов.

Значит, мы должны видеть не рисунок, а бегущую точку. Пробежал зайчик — и нет его: это не карандаш, оставляющий за собой линию.

Рассуждение как будто бы правильное, если позабыть об особенностях глаза.

Представь себе тлеющую лучинку в темноте. Она кажется светящейся точкой. Но ты взял лучинку, резко взмахнул рукой, и точка превратилась в линию. Это явление называется инерцией зрения.

Так и луч на экране телевизора тянет за собой тонкую, прерывистую линию.

Почему прерывистую? Вспомни о нашей мозаике. Не везде она светлая — попадаются темные места, значит, и на экране останется темный участок строки.

Не только благодаря инерции нашего зрения мы видим бегущую точку как линию.

Состав, покрывающий экран телевизора, подобран так, чтобы он светился некоторое мгновение после пробега электронов.

Видел ли ты, как в темном ночном небе оставляет за собой искрящийся след пороховая ракета?

Для того чтобы разобраться как следует в нашем основном вопросе дальности телевидения, необходимо отметить, что изображение передается последовательно, начиная с первой точки в левом верхнем углу. Также запомни, что точек этих примерно полмиллиона.

Опять ультракороткие волны

Нам от них никуда не уйти. Вспомни, сколько неприятностей доставляли они исследователям при самом первом знакомстве. Проходили годы, сменялись поколения радистов, и вот мы вновь встречаемся с ультракороткими волнами, но уже в телевидении.

Несмотря на то что об этих волнах написано много книг, выведены формулы распространения, изучены и исследованы эти волны, как говорится, вдоль и поперек, все же нет-нет, а случаются чудеса. Так, например, известны случаи рекордного приема ультракороткой волны за тысячи километров от передатчика.

Ты уже знаешь, что волны эти плохо огибают препятствия — холмы, здания, — сильно поглощаются лесными массивами… Короче говоря, ничего хорошего в смысле распространения о них сказать нельзя.

Так почему же, зная это, инженеры выбрали для телевидения ультракороткие волны? Теперь понятно, чем объясняется маленькая дальность телевидения.

Если ты станешь молодым радиоспециалистом и тебе поручат проектирование телевизионных установок повышенной дальности, возьмешь да и откажешься от ультракоротких волн. В самом деле, какая уж тут дальность, если для УКВ требуется прямая видимость!

Нет, нельзя отказаться от этих недальнобойных волн. Правда, можно взять волны еще более короткие, вплоть до сантиметровых, но в этом случае дальность будет гораздо меньше. Почему телевидение высокой четкости нельзя передавать на длинных волнах или, например, на коротких, перекрывающих огромные расстояния?

Вспомни о том, что изображение составляется из множества точек. Передавать эти полмиллиона точек надо быстро, иначе не выйдет ясного изображения. Получаются очень частые колебания сигналов. А такие частые колебания можно перенести в пространство только на ультракоротких волнах.

Кроме того, даже если бы, вопреки законам радиотехники, нам и удалось использовать более длинные волны, то пришлось бы закрыть все радиовещание на этих волнах: огромный участок диапазона был бы занят телевидением. Оно требует широкой полосы, а ее можно найти только на ультракоротких волнах. Вот уж, действительно, никуда от них не денешься!

Но как же все-таки решить задачу? Как дальновидение сделать по-настоящему дальним?

Попробуем в несколько раз увеличить мощность телецентра. Дальность немного повысится. Но разве это выход? Стоит ли из-за лишнего десятка километров так расходовать энергию? Техническая задача должна решаться не только целесообразно, но, если хочешь, даже изящно. Есть у инженеров такое понятие-«изящное решение».