Занимательно о химии - Власов Лев Григорьевич. Страница 45
Сейчас понятие «чилийская селитра» стало уделом истории. А примерно лет семьдесят назад оно не сходило с уст.
На обширных пространствах республики Чили простирается унылая пустыня Атакама. Она тянется на сотни километров. На первый взгляд это самая обычная пустыня, однако от других пустынь земного шара ее отличает одно любопытное обстоятельство: под тонким слоем песка здесь находятся мощные залежи азотнокислого натрия, или натриевой селитры. Об этих залежах знали давно, но, пожалуй, впервые вспомнили о них тогда, когда в Европе стало не хватать пороха. Ведь для производства пороха раньше использовались уголь, сера и селитра.
Срочно снарядили экспедицию для доставки заокеанского продукта. Однако весь груз пришлось выбросить в море. Оказалось, что для производства пороха годится только калиевая селитра. Натриевая жадно поглощала влагу из воздуха, порох отсыревал, и использовать его было невозможно.
Не в первый раз пришлось выбрасывать европейцам заокеанский груз в море. В XVII веке на берегах реки Платино-дель-Пино были найдены крупинки белого металла, получившего название платины. Впервые в Европу платина попала в 1735 году. Но с ней не знали толком, что делать. Из благородных металлов в то время были известны лишь золото и серебро, и платина не находила себе сбыта. Но вот ловкие люди обратили внимание, что по удельному весу платина и золото довольно близки друг к другу. Воспользовались этим и стали добавлять платину к золоту, которое шло на изготовление монет. Это уже была подделка. Испанское правительство запретило ввоз платины, а те запасы, которые еще остались в государстве, — собрали и в присутствии многочисленных свидетелей утопили в море.
Но история с чилийской селитрой не окончилась. Она оказалась превосходным азотным удобрением, благосклонно предоставленным человеку природой. Других азотных удобрений в то время не знали. Началась интенсивная разработка природных месторождений натриевой селитры. Из чилийского порта Иквикве ежедневно отчаливали суда, доставлявшие столь ценное удобрение во все уголки земного шара.
…В 1898 году мир был потрясен мрачным предсказанием знаменитого Крукса. В своей речи он предрекал человечеству смерть от азотного голода. Ежегодно вместе с урожаем поля лишаются азота, а месторождения чилийской селитры постепенно вырабатываются. Сокровища пустыни Атакамы оказались каплей в море.
Тогда ученые вспомнили об атмосфере. Пожалуй, первым человеком, обратившим внимание на безграничные запасы азота в атмосфере, был наш знаменитый ученый Климент Аркадьевич Тимирязев. Тимирязев глубоко верил в науку и силу человеческого гения. Он не разделял опасений Крукса. Человечество преодолеет азотную катастрофу, выпутается из беды, считал Тимирязев. И оказался прав. Уже в 1908 году ученые Биркеланд и Эйде в Норвегии в промышленном масштабе осуществили фиксацию атмосферного азота с помощью электрической дуги.
Примерно в это же время в Германии Фриц Габер разработал метод получения аммиака из азота и водорода. Так была окончательно решена проблема связанного азота, столь необходимого для питания растений. А свободного азота в атмосфере много: ученые подсчитали, что если весь азот атмосферы превратить в удобрения, то этого растениям хватит более чем на миллион лет.
Юстус Либих считал, что растение может поглощать азот воздуха. Удобрять почву необходимо лишь калием и фосфором. Но именно с этими элементами ему и не повезло. Его «патентованное удобрение», которое взялась выпускать одна из английских фирм, не приводило к прибавке урожая. Лишь через много лет понял и открыто признал свою ошибку Либих. Он использовал нерастворимые фосфорнокислые соли, боясь, что хорошо растворимые будут быстро вымыты из почвы дождями. Но оказалось, растения не могут усваивать фосфор из нерастворимых фосфатов. И человеку пришлось готовить для растений своеобразный «полуфабрикат».
Каждый год урожаи всего мира уносят с полей около 10 миллионов тонн фосфорной кислоты. Для чего же нужен фосфор растениям? Ведь он не входит ни в состав жиров, ни в состав углеводов. Да и многие белковые молекулы, особенно наиболее простые, не содержат фосфора. Но без фосфора все эти соединения просто не могут образоваться.
Фотосинтез — это не просто синтез углеводов из углекислоты и воды, который «шутя» производит растение. Это сложный процесс. Фотосинтез идет в так называемых хлоропластах — своеобразных «органах» растительных клеток. В состав хлоропластов как раз и входит много соединений фосфора. Грубо приближенно хлоропласты можно представить себе в виде желудка какого-либо животного, где происходит переваривание и усвоение пищи, — ведь именно они имеют дело с непосредственными «строительными» кирпичиками растений: углекислотой и водой.
Поглощение растением углекислоты из воздуха происходит с помощью фосфорных соединений. Неорганические фосфаты превращают углекислый газ в анионы угольной кислоты, которые в дальнейшем и идут на постройку сложных органических молекул.
Конечно, роль фосфора в жизнедеятельности растений этим не ограничивается. Да и нельзя сказать, что его значение для растений уже выяснено полностью. Однако даже то, что известно, показывает его важную роль в их жизнедеятельности.
Это действительно война. Только без пушек и танков, ракет и бомб. Это «тихая», иногда многим незаметная, война не на жизнь, а на смерть. И победа в ней — счастье для всех людей.
Много ли вреда причиняет, например, обычный овод? Оказывается, это зловредное создание приносит убыток, только в нашей стране исчисляемый миллионами рублей в год. А сорняки? Только в США их существование стоит четыре миллиарда долларов. Или взять саранчу, сущее бедствие, превращающее цветущие поля в голую, безжизненную землю. Если подсчитать весь вред, который наносят сельскому хозяйству мира растительные и животные грабители за один-единственный год, получится невообразимая сумма. На эти деньги можно было бы целый год бесплатно кормить 200 миллионов человек!
Что такое «цид» в переводе на русский язык? Это значит — убивающий. И вот созданием различных «цидов» и занялись химики. Ими были созданы инсектициды — «убивающие насекомых», зооциды — «убивающие грызунов», гербициды — «убивающие траву». Все эти «циды» находят сейчас самое широкое применение в сельском хозяйстве.
До второй мировой войны широко применялись в основном неорганические ядохимикаты. Различных грызунов и насекомых, сорняки обрабатывали мышьяковыми, серными, медными, бариевыми, фтористыми и многими другими ядовитыми соединениями. Однако, начиная с середины сороковых годов, все большее распространение начинают находить органические ядохимикаты. Такой «крен» в сторону органических соединений был сделан вполне сознательно. Дело не только в том, что они оказались более безвредными для человека и сельскохозяйственных животных. Они обладают большей универсальностью, да и требуется их значительно меньше, чем неорганических, для получения того же эффекта. Так, всего миллионная доля грамма порошка ДДТ на один квадратный сантиметр поверхности полностью уничтожает некоторых насекомых.
В использовании органических ядохимикатов были и свои курьезы. Одним из действенных ядохимикатов считается в настоящее время гексахлоран. Однако, наверное, мало кому известно, что это вещество было получено впервые еще Фарадеем в 1825 году. Больше ста лет исследовали гексахлоран химики, даже не подозревая о его чудесных свойствах. И лишь после 1935 года, когда за его изучение взялись биологи, этот инсектицид стал выпускаться в промышленных масштабах. Лучшими инсектицидами в настоящее время являются фосфорорганические соединения, например фосфамид или препарат М-81.