Взрывающиеся солнца. Тайны сверхновых - Азимов Айзек. Страница 35
Расширяющийся заряд газа, образовавшийся при коллапсе солнцеобразной звезды, может содержать от 10 до 20 % ее первоначальной массы. Однако эта материя уносится с наружных областей звезды, и, даже когда такие звезды стоят на грани коллапса, эти области, в сущности, не что иное, как смесь водорода с гелием.
Даже тогда, когда в результате турбулентности звезды, стоящей на точке коллапса, тяжелые ядра из ее недр выносятся на поверхность и выбрасываются в космос как часть газового потока, все равно это крошечная, едва заметная часть тех тяжелых ядер, что существуют в межзвездных газовых облаках.
Но раз уж мы остановились на том, как образуются белые карлики, уместен вопрос: а что происходит в тех особых случаях, когда белый карлик не означает конец, но служит фактором распределения вещества в космосе?
Ранее в этой книге мы говорили о белых карликах как о части тесной двойной системы, способной наращивать материю за счет звезды-компаньона, приближающейся к стадии красного гиганта. Время от времени часть этой материи на поверхности белого карлика охватывается ядерной реакцией и высвобождающаяся огромная энергия, с силой выбрасывая в космос продукты синтеза, заставляет его вспыхивать с яркостью новой.
Но материал, наращиваемый белым карликом, это в основном водород и гелий из наружных слоев раздувающегося красного гиганта. Реакция синтеза превращает водород в гелий, и в космос при взрыве взлетает именно облако гелия.
Значит, и в этом последнем случае если какие-то тяжелые ядра и поступили от звезды-компаньона или образовались в процессе синтеза, то число их так ничтожно, что ими не объяснить того множества тяжелых ядер, что рассеяно в межзвездных облаках.
С чем же мы остаемся?
Единственный возможный источник тяжелых ядер — это сверхновая.
Сверхновая типа 1, как я ранее объяснял, возникает на той же почве, на какой возникают обычные новые: белый карлик получает материю от близрасположенного компаньона, собирающегося стать красным гигантом. Разница в том, что здесь белый карлик стоит у предела массы Чандрасекара, поэтому добавляемая масса в конце концов выводит его за этот предел. Белый карлик обречен на коллапс. При этом в нем возникает мощнейшая ядерная реакция и он взрывается.
Вся его структура, равная по массе 1,4 массы Солнца, разлетается в прах и превращается в облако расширяющегося газа.
Некоторое время мы наблюдаем его как сверхновую, но это излучение, очень сильное в первый момент, постепенно исчезает. Остается только облако газа, которое расширяется миллионы лет, пока не сольется с общим фоном межзвездного газа.
При взрыве белого карлика в космос рассеивается огромное количество углерода, азота, кислорода и неона (из всех тяжелых ядер наиболее распространенных элементов). В ходе самого взрыва происходит дальнейшая ядерная реакция, в результате которой образуются небольшие количества ядер еще более тяжелых, чем неон. Разумеется, лишь очень немногие белые карлики достаточно массивны и достаточно близки к большой звезде-компаньону, чтобы стать сверхновой типа 1, но на протяжении 14 млрд. лет жизни Галактики таких взрывов было так много, что ими с лихвой можно объяснить значительное количество тяжелых ядер, имеющихся в межзвездном газе.
Остальные тяжелые ядра существуют в межзвездной среде как результат эволюции сверхновых типа 2. Речь идет, как было сказано, о массивных звездах, которые в 10, 20 и даже в 60 раз тяжелее Солнца.
На этапе существования звезд в виде красных гигантов в их ядрах происходит ядерный синтез, продолжающийся до тех пор, пока там не начнут во множестве образовываться ядра железа. Образование железа — это тупик, за которым ядерный синтез не может больше существовать как устройство, производящее энергию. Поэтому звезда переживает коллапс.
Хотя ядро звезды содержит в последовательно более глубоких слоях тяжелые ядра, вплоть до ядер железа, внешние области звезды все еще имеют внушительные количества нетронутого водорода, ни разу не находившегося в условиях высоких температур и давлений, которые могли бы принудить его вступить в ядерную реакцию.
Коллапс гигантской звезды настолько стремителен, что она испытывает резкое, катастрофическое возрастание и температуры и давления. Весь водород (и гелий тоже), существовавший до сих пор безмятежно, теперь вступает в реакцию, причем вступает весь сразу. В результате происходит колоссальный взрыв, который мы наблюдаем с Земли как сверхновую типа 2.
Энергия, высвобождаемая при этом, может идти и действительно идет на ядерные реакции, способные образовать ядра более тяжелые, чем ядра железа. Такое образование ядер требует притока энергии, но в разгар неистовства сверхновой энергии не занимать… Так происходит образование ядер вплоть до урана и тяжелее. Достаточно энергии и для образования радиоактивных (т. е. неустойчивых) ядер, которые со временем распадутся.
Фактически все тяжелые ядра, существующие во Вселенной, образовались в результате взрывов сверхновых типа 2.
Конечно, такие массивные звезды, из которых обязательно должна получиться сверхновая типа 2, встречаются не часто. Лишь одна звезда из миллиона, а может быть и того меньше, обладает для этого достаточной массой. Однако это и не такой уж редкий случай, как кажется на первый взгляд.
Таким образом, в нашей Галактике имеются десятки тысяч звезд, являющихся потенциальными сверхновыми типа 2.
Поскольку гигантские звезды могут оставаться в главной последовательности самое большее несколько миллионов лет, мы вправе удивиться: почему же они все давным-давно не взорвались и не исчезли? Дело в том, что новые звезды образуются все время и некоторые из них — звезды с очень большой массой. Сверхновые типа 2, которые мы теперь наблюдаем, — это извержения звезд, образовавшихся всего несколько миллионов лет назад. Сверхновые типа 2, которые произойдут в далеком будущем, станут взрывами крупных звезд, которых еще нет сегодня. Может быть, появятся сверхновые и более грандиозные. Еще сравнительно недавно астрономы были уверены, что звезд с массой в 60 раз больше солнечной вообще, наверное, не существует. Считалось, что такие звезды в ядрах своих будут развивать так много тепла, что моментально взорвутся, несмотря на огромную гравитацию.
Другими словами, они даже никогда бы не смогли и образоваться.
Однако в 80-х годах поняли, что в этих рассуждениях не принимались в расчет некоторые аспекты общей теории относительности Эйнштейна. После того как эти аспекты были учтены в астрономических вычислениях, оказалось, что звезды размером в 100 солнечных диаметров и массой в 2000 раз большей, чем масса Солнца, все еще могут быть устойчивы. Более того, несколько астрономических наблюдений подтвердили, что подобные сверхмассивные звезды действительно существуют.
Естественно, сверхмассивные звезды со временем коллапсировали и взрывались как сверхновые, которые производили гораздо больше энергии и в продолжение гораздо большего времени, чем обычные сверхновые. Эти сверхвзрывы мы, по-видимому, должны рассматривать как сверхновые типа 3.
Примерно в это же время советский астроном В. П. Утробин решил ретроспективно изучить астрономические записи прошлых лет, чтобы найти там сверхновую, которая по природе своей была бы сверхновой типа 3. Он высказал предположение, что сверхновая, обнаруженная в 1901 г. в галактике созвездия Персея, именно тот случай. Вместо того чтобы достичь пика блеска за несколько дней или недель, этой сверхновой для достижения максимума блеска потребовался целый год, после чего она очень медленно угасала, оставаясь на виду девять последующих лет.
Излученная ею суммарная энергия была в 10 раз больше, чем энергия обычной сверхновой. Даже в наше время астрономам это показалось фантастикой, и они были явно озадачены.
Такие сверхтяжелые звезды — явление крайне редкое, но количество тяжелых ядер, которые они вырабатывают, в тысячу раз и более превышает количество ядер, производимых обычными сверхновыми. Это значит, что вклад тяжелых ядер в облака межзвездного газа, вносимый сверхтяжелыми звездами, очень велик. В нашей Галактике за время ее существования было, по-видимому, 300 млн. взрывов всевозможных сверхновых (и аналогичное же количество, с поправкой на разность в размерах, в каждой другой), и этого вполне достаточно, чтобы объяснить запасы тяжелых ядер в межзвездном газе, в наружных слоях обычных звезд (и в дополнение к нашей планетной системе — в любых планетах).