Внутреннее устройство Linux - Уорд Брайан. Страница 65
RX packets:85076006 errors:0 dropped:0 overruns:0 frame:0
TX packets:68347795 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:86427623613 (86.4 GB) TX bytes:23437688605 (23.4 GB)
Interrupt:20 Memory:fe500000-fe520000
Вывод команды ifconfig включает множество деталей об интернет-уровне и о физическом уровне (иногда он даже совсем не содержит интернет-адреса!). Более подробно мы обсудим этот вывод позже, а сейчас сосредоточимся на второй строке, которая сообщает, что хост настроен на использование адреса IPv4 (inet addr) 10.23.2.4. В той же самой строке для параметра Mask указано значение 255.255.255.0. Это маска подсети, определяющая подсеть, к которой принадлежит IP-адрес. Посмотрим, как это устроено.
примечание
Команда ifconfig, подобно некоторым другим, которые вы встретите в этой главе (такие как route и arp), на техническом уровне вытеснена более новой командой ip. Команда ip способна выполнить больше, чем старые команды, и она предпочтительнее при написании сценариев. Однако большинство пользователей по-прежнему использует старые команды при настройки сети вручную, и такие команды также могут быть применены в других версиях Unix. По этой причине мы будем применять команды «в старом стиле».
9.3.2. Подсети
Подсеть — это соединенная группа хостов, IP-адреса которых каким-либо образом упорядочены. Обычно такие хосты расположены в одной физической сети, как показано на рис. 9.2. Например, хосты между 10.23.2.1 и 10.23.2.254 могли бы составлять подсеть, равно как и хосты между 10.23.1.1 и 10.23.255.254.
Подсеть определяется с помощью двух фрагментов: сетевого префикса и маски подсети (вроде той, которую вы видели в отчете команды ifconfig в предыдущем разделе). Предположим, необходимо создать подсеть, содержащую IP-адреса от 10.23.2.1 до 10.23.2.254. Сетевой префикс — та часть, которая является общей для всех адресов данной подсети; в приведенном примере это 10.23.2.0, а маской подсети будет 255.255.255.0. Посмотрим, почему эти числа правильны.
Не сразу понятно, каким образом префикс и маска работают совместно, чтобы дать вам все возможные IP-адреса в подсети. Выяснить это поможет просмотр данных чисел в двоичном представлении. Маска отмечает положения битов в IP-адресе, которые являются общими для подсети. Вот, например, двоичная запись адресов 10.23.2.0 и 255.255.255.0:
10.23.2.0: 00001010 00010111 00000010 00000000
255.255.255.0: 11111111 11111111 11111111 00000000
Теперь выделим жирным шрифтом те положения битов в адресе 10.23.2.0, которые являются единицами в адресе 255.255.255.0:
10.23.2.0: 00001010 00010111 00000010 00000000
Посмотрите на биты, которые не выделены жирным шрифтом. Для любого из них можно установить значение 1, чтобы получить правильный IP-адрес для данной подсети, за исключением случая, когда все биты являются нулями или единицами.
Собирая все воедино, можно понять, как хост с IP-адресом 10.23.2.1 и маской подсети 255.255.255.0 оказывается в той же подсети, что и любой другой компьютер, IP-адрес которого начинается с 10.23.2. Можно обозначить в целом эту подсеть как 10.23.2.0/255.255.255.0.
9.3.3. Распространенные маски подсети и нотация CIDR
Если вам повезет, вы будете иметь дело в основном с простыми масками подсети вроде 255.255.255.0 или 255.255.0.0. В случае невезения вам может попасться адрес 255.255.255.192, для которого не так-то просто установить набор адресов, принадлежащих подсети. Более того, возможно, что вы встретите другую форму представления подсети, которая называется нотацией CIDR (Classless Inter-Domain Routing, бесклассовая междоменная маршрутизация). В ней подсеть 10.23.2.0/255.255.255.0 будет записана в виде 10.23.2.0/24.
Чтобы понять, что это значит, посмотрите на маску в двоичной форме (как в примере, который вы видели в предыдущем разделе). Вы обнаружите, что практически все маски подсетей являются всего лишь набором единиц, за которыми следует набор нулей. Например, вы только что видели, что адрес 255.255.255.0 в двоичной записи представлен в виде 24 единичных бит, за которыми следуют 8 нулевых бит. Нотация CIDR идентифицирует маску подсети по количеству ведущих единиц в записи маски подсети. Следовательно, такая комбинация, как 10.23.2.0/24, содержит как префикс подсети, так и маску подсети.
В табл. 9.1 приведено несколько примеров масок подсети и их записи в форме CIDR.
Таблица 9.1. Маски подсети
Длинная форма
Форма CIDR
255.0.0.0
8
255.255.0.0
16
255.240.0.0
12
255.255.255.0
24
255.255.255.192
26
примечание
Если вы не очень хорошо знакомы с преобразованием чисел в десятичный, двоичный и шестнадцатеричный форматы, можно воспользоваться утилитой-калькулятором, например bc или dc, чтобы переводить числа с различными основаниями системы счисления. Например, в утилите bc можно запустить команду obase=2; 240, чтобы вывести число 240 в двоичной форме (основание равно 2).
Идентификация подсетей и их хостов является первым строительным блоком в понимании того, как работает Интернет. Но тем не менее подсети еще предстоит соединить.
9.4. Маршруты и таблица маршрутизации ядра
Соединение подсетей Интернет заключается в основом в идентификации хостов, подключенных к более чем одной подсети. Вернитесь к рис. 9.2 и поразмышляйте о хосте А с IP-адресом 10.23.2.4. Этот хост подключен к локальной сети 10.23.2.0/24 и может напрямую взаимодействовать с хостами этой сети. Чтобы добраться до остальной части Интернета, он должен «общаться» через маршрутизатор с адресом 10.23.2.1.
Как ядро Linux различает эти два типа назначений? Чтобы выбрать для себя образ действий, оно использует конфигурацию назначений, которая называется таблицей маршрутизации. Чтобы отобразить таблицу маршрутизации, применяйте команду route -n. Вот что вы могли бы увидеть для простого хоста, такого как хост с адресом 10.23.2.4:
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.23.2.1 0.0.0.0 UG 0 0 0 eth0
10.23.2.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0
Две последние строки здесь содержат информацию о маршрутизации. Столбец Destination сообщает префикс сети, а столбец Genmask — маску, которая соответствует данной сети. В этом выводе определены две сети: 0.0.0.0/0 (которая соответствует каждому адресу в Интернете) и 10.23.2.0/24. У каждой из этих сетей в столбце Flags стоит символ U, который говорит о том, что данный маршрут активен («up»).
Различие между назначениями заложено в комбинации значений столбцов Gateway и Flags. Для адреса 0.0.0.0/0 в столбце Flags указан флаг G, который означает, что для данной сети связь должна проходить через шлюз, указанный в столбце Gateway (в данном случае 10.23.2.1). Однако для сети 10.23.2.0/24 в столбце Flags нет символа G, это говорит о том, что данная сеть подключена напрямую каким-либо способом. Здесь 0.0.0.0 используется в качестве заместителя значения в столбце Gateway. Не обращайте пока внимания на остальные столбцы вывода.
Есть некоторая хитрость: допустим, хост собирается отправить что-либо по адресу 10.23.2.132, который соответствует обоим правилам таблицы маршрутизации, 0.0.0.0/0 и 10.23.2.0/24. Как ядро узнает о том, что необходимо применить второй адрес? Оно выбирает самый длинный совпадающий префикс назначения. Именно здесь нотация CIDR становится чрезвычайно удобной: адрес 10.23.2.0/24 годится, и длина его префикса равна 24 битам; адрес 0.0.0.0/0 тоже подходит, но его префикс — нулевой длины (то есть у него нет префикса), поэтому берет верх правило для адреса 10.23.2.0/24.