Ракеты и люди. Лунная гонка - Черток Борис Евсеевич. Страница 115

В недрах теоретического отдела Легостаева вынашивалась идея отказа от классического карданного подвеса, ибо сама задача управления ориентацией ИСЗ из-за требований неограниченных угловых эволюций (программные повороты, смена режимов ориентации, эволюции при стыковках) подсказывала необходимость отказа от механического ограничения. Внутри систем космического аппарата не должно быть никаких упоров для маневрирования! Так ставилась задача.

Теоретически бескарданные, или бесплатформенные, системы, или, как их теперь называют, БИНС – бескарданные инерциальные навигационные системы, были известны давно. Имелись на сей счет даже диссертации. Но самые главные ракетные управленцы Кузнецов и Пилюгин считали, что это забава для теоретиков, подобная очередному варианту перпетуум-мобиле.

Тем не менее теоретики утверждали, что в принципе можно создать бесплатформенную систему ориентации и навигации, если овладеть техникой численного интегрирования систем кинематических уравнений и преобразований систем координат. Система углов, входящих в уравнения, описывающие движение твердого тела, в принципе может моделировать карданный подвес гироскопов. Если есть хороший вычислитель, он, получая информацию, может заменить сложную конструкцию гироплатформы.

Практическое решение такой задачи не под силу чистому математику. Требовался трезвый инженерный взгляд на классическую теорию углового движения твердого тела. В данном случае требовалось найти приемлемый для практики метод замены сложной механики сложной математикой, не имеющей «упоров» и многих десятков килограммов металла. Как это сделать?

История науки и техники показывает, что серьезные открытия делают отдельные люди, либо очень небольшие коллективы – два-три человека. Вот когда открытие сделано, тогда для его реализации требуются смелые руководители, которые пойдут на риск, втянут в эту работу большой коллектив и найдут требуемые средства.

Началом отечественной эпохи бесплатформенных систем следует считать предложение двух молодых выпускников физтеха, появившихся в ОКБ-1 вместе с Раушенбахом. Двадцатисемилетний Владимир Бранец и тридцатилетний Игорь Шмыглевский в 1963 году обратились к трудам математика Гамильтона, который впервые создал в 1843 году теорию кватернионов, стремясь найти удобный аппарат для изучения геометрии пространства.

В 1973 году, через 130 лет после открытия Гамильтона, уже обстрелянные на ракетном полигоне Бранец и Шмыглевский опубликовали труд «Применение кватернионов в задачах ориентации твердого тела». Книгу выпустило издательство «Наука» через два года после получения рукописи, которая явилась завершением многолетних исследований. Труд стал классическим и был переведен даже на китайский. Тяжелая болезнь преждевременно унесла из жизни Шмыглевского, и он не мог полюбоваться своим трудом, изложенным в иероглифах. Такой сувенир Бранцу преподнесли китайские ученые во время его командировки в Пекин.

Предложенные Бранцем и Шмыглевским методы численного интегрирования кинематических уравнений с использованием кватернионов в задачах управления ориентацией любых летательных аппаратов, которые математики называют «твердым телом», решили также и проблемы оптимального управления, то есть разворотов и ориентации с минимальными энергетическими потерями, и устойчивости процесса.

Однако бескарданная система при самой гениальной математике должна начинать танцевать от печки. Печкой являлись уже освоенные и летающие оптические и даже ионные датчики. Если эти датчики дополнить простейшими измерителями угловых скоростей по каждой из трех осей ориентации, система управления получала необходимый набор исходной информации.

Я уже упоминал, что для грамотной постановки задачи перед смежными главными конструкторами кроме желания требовались свои специалисты, которые бы знали действительные возможности смежника. После принятия смежником заказа к разработке эти специалисты осуществляли технический контроль, защищая наши интересы и разрешая неизбежно возникающие противоречия между тем, что мы требовали, и тем, что получалось на самом деле. Таких специалистов называли кураторами, подчеркивая тем самым их отличие от чистых разработчиков. Мне всегда казалось такое деление несправедливым. Специалист, стоящий между двумя главными, если он личность творческая, способен внести в процесс создания новой системы то, до чего не додумается в отдельности ни заказчик, ни исполнитель.

Такими творческими кураторами у нас были: по оптическим приборам – Станислав Савченко, о котором я уже упоминал, по радиосистемам для сближения – Борис Невзоров и Нина Сапожникова, по гироскопическим приборам – Юрий Бажанов.

Вместе с заместителем Башкина – Львом Зворыкиным Бажанов вывел меня на авиационное КБ, которое было способно изготовить по нашим требованиям легкие, простые и надежные датчики угловых скоростей (ДУС). Руководителем нужной организации оказался мой старый знакомый еще с довоенных лет – бывший главный конструктор завода «Авиаприбор» Евгений Антипов.

Встреча дала повод для воспоминаний о работах во времена туманной авиационной молодости. Так получилось, что со времен 1934 года мы ни разу не встречались. Спустя 30 лет мы договорились по всем вопросам очень быстро, и вскоре Антипов завизировал проект решения ВПК, обязывающий его разрабатывать ДУСы по техническому заданию королевского ОКБ-1.

Для революционного скачка в технике систем управления оставалось решить самую трудную по тем временам проблему: где взять хорошую бортовую вычислительную машину?

История создания бортовых вычислительных машин увлекательна и поучительна. Но ее изложение требует особого места и времени.

Бортовые вычислительные машины за последние 25 лет настолько органично вписались в структуру систем управления космическими аппаратами, что молодой специалист, начинающий работать в нашей области, не представляет, как вообще можно было летать без них. В то же время на «Союзах» до сих пор сохранились автоматы, функции которых так и не доверены ни человеку, ни вычислительной машине.

При создании космических кораблей «Союз» из всех проблем управления движением особого отношения требовала задача обеспечения спуска с орбиты на Землю осесимметричного спускаемого аппарата, имеющего малое аэродинамическое качество при малых расчетных перегрузках. Подъемная сила такого аппарата создается путем небольшого смещения его центра масс относительно оси симметрии. Необходимо было разработать особо надежную структуру, алгоритмы, приборы управления дальностью и стабилизацией спускаемого аппарата так, чтобы максимально уменьшить площадь района возможного приземления с целью быстрого поиска и эвакуации экипажа. Система управления спуском должна успокоить спускаемый аппарат так, чтобы гарантировать начальные условия для надежного введения парашютной системы, которая управляется автономной системой приземления. Для обеспечения надежности систем управления спуском и приземлением выбирались наиболее простые алгоритмы, использовалось дублирование, а иногда и троирование приборов и агрегатов, отказ которых мог привести к катастрофическим последствиям. Впервые потребовалось создать не только новую технику управления, но и новую организацию разработок, в которой эстафета ответственности за управление движением передавалась из отдела в отдел, от коллектива, отвечавшего за управление орбитальным полетом, к специалистам по управлению спуском, от них – к разработчикам системы приземления. Системы управления спуском и приземлением обязаны были кроме своих штатных задач выполнять функции в составе системы аварийного спасения на участке выведения.

Три системы: управление спуском, управление приземлением и аварийное спасение – мы создали в виде автоматов, не предусматривающих вмешательства человека. За тридцать лет на сотнях пусков ни одна из этих систем нас не подвела.

История разработки систем управления космическими аппаратами есть часть истории космонавтики. Лучше всего оценить роль одного человека или многих людей в контуре управления космическим аппаратом можно на конкретных примерах аварийных или нештатных ситуаций.