100 великих достижений в мире техники - Зигуненко Станислав Николаевич. Страница 20
Все, казалось бы, хорошо. Однако уже первые опыты с «газовой взрывчаткой» обескуражили специалистов. Оказалось, что при взрыве газа давление во взрывной камере нарастает не скачком, как при пороховом заряде, а слишком плавно. В итоге заготовка «недодавливалась», получался брак. Что делать?
Пришлось технологам обратиться за помощью к ученым. Специалисты Института химической физики РАН проанализировали ситуацию и пришли к выводу: надо взрыв заменить детонацией.
Для человека несведущего кажется, что всякий взрыв обязательно сопровождается детонацией – образованием мощной ударной волны, мчащейся со скоростью 3–3,5 км/с. Однако если воспламенить газовую смесь электрической искрой, как это обычно делается в двигателе внутреннего сгорания, то детонации, как правило, не возникает. Иначе двигатель попросту шел бы вразнос.
Однако то, что хорошо для двигателистов, плохо для производственников. И в данном случае вместо электрической искры для возбуждения детонации требуется что-то более энергичное: детонационный запал или, на худой конец, быстро летящая пуля…
В общем, на колу мочало – начинай сначала. От чего пытались отказаться, к тому и пришли?.. Ан нет, сотрудники Института химфизики все-таки нашли способ «предварительного получения детонационной волы в трубке малого сечения с последующим выпуском ее в объем любой формы».
Так он описан в официальном документе. Практически же все делается так. К корпусу конической сужающейся кверху взрывной камеры приваривают тонкую трубку длиной около 10 ее диаметров. Внутрь трубки вставляют проволочную спираль для лучшего завихрения смеси, а сверху подсоединяют манометр, меряющий давление исходной смеси во взрывной камере. Рядом монтируют обычную свечу зажигания. Добавляют к этому пару баллонов высокого давления с редукторами кранами и трубками для подвода газов во взрывную камеру. Вот, собственно, и весь детонационный газовый пресс.
Закрепив заготовку на матрице с помощью специального кольца, рабочий открывает краны и подает во взрывную камеру горючую смесь под давлением до 8 атмосфер. Затем краны перекрывают, нажимают кнопку зажигания, и электрическая искра воспламеняет смесь в верхнем конце трубки. Двигаясь по внутреннему каналу, пламя разгоняется все быстрее и турбулизуется, то есть завихряется. И когда вихрь врывается в пространство основной камеры, происходит детонация взрывной волны.
При этом развивается давление до 400 атмосфер. Этого вполне достаточно для штамповки даже толстых заготовок. А если вдруг потребуется особая равномерность силы удара, на заготовку наливают слой воды толщиной примерно в 5 см, а иногда даже всю взрывную камеру помешают под воду.
Кстати, наличие подводной камеры сгорания опять-таки позволяет приглушить шум детонационного процесса. А кроме того, в принципе, позволяет и вообще обойтись даже без горючего газа. Его можно получать прямо на месте. Ведь вода, как всем известно, состоит из водорода и кислорода. А значит, если в воду наряду с матрицей и заготовкой мы еще опустим и устройство для электрического разложения водорода, то гремучий газ – смесь водорода с кислородом – получим, не отходя от установки. Отмерить же его необходимое количество можно очень просто – по электрическому счетчику. Количество потребляемой энергии и получаемого газа при электролизе строго пропорционально.
И как только газа накопится достаточное количество, можно производить его подрыв.
При экспериментах, кстати, выяснилось, что скорость детонации гремучего газа достигает 12 км/с, что соответствует второй космической скорости! В итоге вода реагирует на взрыв как твердое тело. Она даже не расплескивается и равномерно передает давление на заготовку. В итоге деталь получается настолько гладкой и чистой, что даже не требует дальнейшей обработки.
Удобно и то, что после взрыва не остается никаких газов или нагара – ведь продуктом взрыва гремучего газа является опять-таки вода.
Электричество из… бомбы?!
Что бы ученые ни делали, все у них бомбы получаются. Согласитесь, в этом ехидном высказывании есть большая доля истины. Однако справедливости ради укажем, что есть исследователи, которые пытаются извлечь пользу и из бомб.
Проект геолога. Лет двадцать пять тому назад в журнале «Техника – молодежи» была опубликована любопытная заметка, в которой кандидат геолого-минералогических наук Джума Хамраев из Ташкента рассматривал проект ядерно-взрывной электростанции.
«Представьте себе огромные шары, вложенные один в другой, – писал автор. – Они замурованы в гигантском бетонном блоке, зарытом в землю. В центральном шаре-камере взрывается ядерный заряд. Возникающие излучения, налагаясь на пластины теплоаккумулятора, преобразуются в тепло. Оно через расположенный в среднем шаре газовый теплорегулятор нагревает воду, налитую в крайний шар – рабочую камеру, и пар выводится на поверхность – к парогенераторам…»
Сможет ли подземный ядерный взрыв стать источником энергии?
Описывая конструктивные особенности, автор не забыл и о мерах безопасности. Чтобы сила ядерного взрыва не разорвала бетон, во внутренней камере должен поддерживаться высокий вакуум. А кроме того, сама поверхность выполнена в виде клиньев, что многократно увеличит теплопередачу, а стало быть, не даст материалу перегреваться…
Проект был опубликован, обсужден и благополучно… забыт. Отчасти потому, что, как всегда, не хватило денег на доведение проекта до стадии «железа». К тому же «мирные взрывы», проходившиеся с целью интенсификации нефтегазовых месторождений и строительства подземных хранилищ, показали, что хлопот с ними не оберешься из-за радиоактивного загрязнения. Ну а Чернобыль окончательно расставил точки над «i», показав, насколько опасно шутить с ядерным «джинном».
Что думают американцы? Тем не менее от идеи ядерной взрывной электростанции не отказались окончательно. За прошедшие годы она оказалась в значительной степени модернизированной. Вот что пишет по этому поводу американский журнал «Текнолоджи ревью»:
«Небольшие подземные ядерные взрывы могли бы снабжать мир электроэнергией в течение нескольких столетий. В отличие от других способов осуществления термоядерного синтеза этот метод уже сейчас осуществим и доступен».
Наиболее практичный и экономичный путь получения термоядерной энергии видится таким. В подземных камерах производятся небольшие взрывы, а высвобождаемая при этом энергия поглощается теплоаккумуляторами. В их роли могут выступать соли, плавящиеся под действием термоядерного тепла. Далее через теплообменник тепло будет передаваться воде, и, преобразованная в пар, она будет крутить турбины парогенераторов.
Удалять отходы и неиспользованное топливо из рабочей камеры будут те же соли. Их переправят на находящийся тут же, под землей, завод по переработке. А те отходы, использовать которые уже невозможно, превращены в стеклообразную твердую массу и похоронены глубоко под землей.
«Подобная идея, конечно, кажется опасной, – пишет журнал. – Однако электростанции, основанные на процессах мирных термоядерных взрывов (МТВ), будут в действительности все же безопаснее, чем нынешние АЭС, сравнимые с электростанциями, базирующимися на синтезе с магнитным и инерционным удержанием плазмы…»
Так это или нет, должны подтвердить более детальные расчеты и компьютерное моделирование. Однако уже сегодня можно увидеть одну из положительных сторон нового проекта.
С помощью МТБ станет возможным постепенно избавиться от излишков ядерного оружия, которого накоплено столько, многие эксперты задумываются: как его уничтожить с минимальным уроном для окружающей среды?
Жаль только, что в «Текнолоджи ревью» нет и намека на то, что у авторов идеи МТБ были предшественники. Возможно, конечно, они не читают наших научно-популярных журналов. Или в очередной раз повторяется старая история: идеи наших соотечественников всплывают через некоторой время за рубежом, принося изрядные дивиденды. Только, увы, не нам…