100 знаменитых загадок природы - Иовлева Татьяна Васильевна. Страница 20

Если не вдаваться в подробности и не использовать специальной терминологии, то струны – это первичные творения в видимой Вселенной. «Струнами» их можно назвать только условно, поскольку эти объекты не материальны. Их можно представить в виде замкнутых в петли струн или нитей, находящихся под чудовищным напряжением. Колебания суперструн с разной частотой порождают разную энергию (а следовательно – и массу) элементарных частиц. Таким образом, все разнообразие частиц в природе – это просто разные октавы одного и того же творения – струны. А следовательно, открывается масса возможностей для развития теории единого поля, которая будет охватывать все устройство мироздания.

Теория суперструн дает объяснение природе элементарных частиц, которые существенно отличаются от всего, к чему мы привыкли. Их нельзя считать «кирпичиками мироздания» – простейшими составляющими, из которых образуется все остальное, поскольку они способны к взаимным превращениям. Превращения происходят практически непредсказуемо: одна и та же элементарная частица может распасться несколькими способами, образовав при этом разные наборы других частиц. Но и это еще не все: у каждой из элементарных частиц (за исключением абсолютно нейтральных) есть античастица. При столкновении они аннигилируют. Элементарные частицы обладают также целым рядом характеристик (достаточно абстрактных), которые неспециалисту кажутся чем-то загадочным: «красота» («прелесть»), «очарование», «странность», «цвет».

Число обнаруженных элементарных частиц уже превысило 350 (вместе с античастицами). Лишь некоторые из них изучены сравнительно хорошо. А часть существует только в теории. В частности, гравитон – квант гравитационного поля – пока что не был обнаружен экспериментально. Впрочем, сторонники теории суперструн не теряют надежды доказать, что их точка зрения на устройство Вселенной – явление того же порядка, что и теория Эйнштейна. Ведь не напрасно же этот великий ученый предсказывал появление полного описания реальности и считал квантовую механику и теорию относительности лишь временным ее «заменителем».

Создание теории, которая бы полностью описывала реальность, – заветная мечта многих великих деятелей науки. Поэтому в последнее время ставятся многочисленные эксперименты, направленные на изучение гравитации. Профессор Эрик Эдельберг из Вашингтона пытается проверить теорию суперструн, исследуя гравитационное воздействие на сверхмалых расстояниях. Технически эксперимент довольно сложен. Он осуществляется при помощи крутильных весов, которые могут измерять действие гравитации под различными углами к притяжению Земли. Их диски подвешены на сверхтонкой проволоке из вольфрама. Один из дисков вращается, создавая гравитационный эффект, угол вращения отслеживается с помощью лазерного луча. Пока что группа профессора Эдельберга сумела сблизить диски крутильных весов на расстояние 100 микрон, но этого оказалось недостаточно ни для подтверждения теории, ни для ее опровержения. Сейчас ученые пытаются уменьшить расстояние до 10 микрон. Если при этом гравитационное взаимодействие между дисками будет отличаться от предсказанного общепринятой теорией, теория суперструн справедлива.

Академик Виталий Гинзбург не исключает, что при сверхмалых расстояниях, возможно, действуют иные законы, чем на больших расстояниях: «Что происходит с гравитацией на расстояниях в доли миллиметра? Неизвестно. Может быть, там другие законы. Может быть, какое-нибудь пятое измерение появится. Удастся это проверить – тогда будет сделано важнейшее фундаментальное открытие современности».

Поиски «свернутых» измерений продолжаются…

ФАЭТОН – ЗАГАДКА ИСЧЕЗНУВШЕЙ ПЛАНЕТЫ

Миллионы лет звездное небо влекло человека своей загадочностью. Наши далекие предки были уверены в том, что все, происходящее на Земле, ниспослано свыше. Со временем люди научились читать звездное небо, как книгу. Но многие тайны космоса остались неразгаданными поныне. Одна из них связана с исчезновением планеты Фаэтон…

Давняя загадка для ученных астрономов – поле астероидов, находящихся в пространстве между Марсом и Юпитером. Еще в древности звездочетов удивляла такое расположение космических тел. Многие сходились во мнении, что на этом месте должна быть еще одна планета.

Так, в Грузии хранится копия документа 1561 года, в которой упоминается, что около Марса имеется еще одна звезда. На глиняных табличках древних шумад (V–IV тыс. до н. э.) зафиксированы сведения, из которых следует, что между орбитами Марса и Юпитера люди наблюдали «планету-невидимку». Подобные тайны можно встретить и в древнекитайских летописях.

Пролить свет на поиск загадочной планеты помогла случайность. В 1766 году немецкий астроном, физик и математик Иоганн Тициус сформулировал, а другой немецкий астроном, Иоганн Боде, обосновал числовую закономерность в расстояниях планет от Солнца. По этой закономерности между Марсом и Юпитером должна существовать «планета № 5». То что правило Тициуса-Боде работает, доказали последующие открытия Урана, Нептуна и Плутона. В конце XVIII века на конгрессе в немецком городе Готе было решено начать поиск недостающей планеты. Однако никому из тех астрономов, которым поручили наблюдения, не повезло. Планету обнаружил в 1801 году Джузеппо Пьяцци, директор обсерватории в Палермо (о. Сицилия). Когда вычислили орбиту этого космического тела, оказалось, что оно движется точно на том расстоянии от Солнца, которое предсказано правилом Тициуса-Боде. Астрономы ликовали: найдена недостающая планета. Ее назвали Церерой, в честь богини – покровительницы Сицилии.

Однако вскоре радость ученых была омрачена цепью новых открытий. В 1802 году была обнаружена между Юпитером и Марсом еще одна малая планета – Паллада. В 1804 году – третья планета – Юнона, а в 1807 году – Веста. Итак, там, где ожидали найти одну большую планету, обнаружили 4 маленькие. Между тем поток открытий малых планет (их еще называют астероидами, то есть «звездоподобными») не прекращался, и к 1890 году их было известно уже свыше 300. Астрономы пришли к твердому убеждению, что между Марсом и Юпитером по орбитам вокруг Солнца вращается целый рой малых планетарных тел. На сегодняшний день известно около 2000 астероидов. И по некоторым оценкам их число может превышать 7000.

Все они двигались примерно на одном и том же расстоянии от Солнца, что и Церера, – 2,8 астрономической единицы (одна астрономическая единица равна расстоянию Земли от Солнца, что составляет 150 млн километров). Именно это обстоятельство позволило немецкому астроному Г. Ольберсу еще в 1804 году высказать гипотезу о том, что малые планеты произошли в результате распада на куски одной большой планеты, которой он дал имя Фаэтон.

Так, согласно древнегреческому мифу, звали сына бога Солнца Гелиоса. Однажды Фаэтон упросил отца позволить ему управлять золотой колесницей Солнца, в которой Гелиос совершал свой каждодневный путь по небосводу. Отец долго не соглашался, но наконец уступил желанию юноши. Но Фаэтон потерял путь среди небесных созвездий. Кони, почувствовав неуверенную руку возницы, понесли. И когда колесница приблизилась на опасное расстояние к Земле, пламя охватило нашу планету. Бог Зевс-Громовержец, чтобы спасти Землю, метнул молнию в колесницу. Фаэтон упал на Землю и погиб.

Таким образом красивая легенда получила реальное научное обоснование. Хотя некоторые современники Г. Ольберса (В. Гершель, Лаверье, П. Лаплас) высказывали другие предположения о происхождении астероидов, но наибольшей популярностью пользовалась точка зрения Ольберса, которая наилучшим образом объясняла все известные к тому времени факты.

Гипотеза немецкого ученого оказалась настолько правдоподобной, что существование Фаэтона считалось общепризнанным до 1944 года, до появления космологической теории О. Ю. Шмидта, который трактовал возникновение астероидов иначе. Согласно этой теории, астероиды – не обломки Фаэтона, а материя некой необразовавшейся планеты. На заре рождения планет, примерно 4 миллиарда лет назад, молодое Солнце было окружено газопылевым облаком. Из-за относительно небольших скоростей пылинки начали быстро слипаться, образовав космические тела, по размерам сравнимые с современными астероидами. Быстрее всего процесс рождения этих тел шел в районе орбиты нынешнего Юпитера, где образовалась самая крупная планета. Растущий Юпитер со временем стал выталкивать протоастероиды из зоны своего влитания, породив среди них хаотическое движение. Они уже не могли объединиться, процесс дробления стал преобладать над процессом роста. Часть протоастероидов покинула Солнечную систему, другая часть время от времени возвращается в виде комет, достигая Земли.