Характер Физических Законов - Голышев Виктор Петрович. Страница 13
Правда, в шахматах этот закон может оказаться не таким уж полезным. Если мы отвернулись надолго, то может случиться, что за это время слона успели съесть, пешка прошла в ферзи и бог решил, что выгоднее иметь слона вместо ферзя, а слон этот оказывается чернопольным. К сожалению, может выясниться, что некоторые из наших сегодняшних законов физики также несовершенны, но я опишу их вам такими, какими мы видим их в настоящее время.
Я сказал, что мы употребляем обычные слова в качестве научных терминов, а в заглавии этой лекции стоит слово "великий" - "Великие законы сохранения". Это не термин: я вставил его лишь затем, чтобы придать заглавию более патетическое звучание, и вполне мог бы назвать лекцию просто "Законы сохранения". Есть несколько законов сохранения, которые верны лишь приблизительно, но иногда оказываются полезными, их мы могли бы назвать "малыми" законами сохранения. Позже я расскажу об одном или двух из них. Но основные законы, которым посвящена эта лекция, насколько нам известно сегодня, совершенно точны.
Проще всего понять закон сохранения электрического заряда; с него я и начну. Существует число, полный электрический заряд мира, которое остается постоянным, что бы ни произошло. Если вы теряете заряд в одном месте, то находите его в другом. Сохранение относится только к полному электрическому заряду. Это опытным путем установил Фарадей. Он экспериментировал с огромным металлическим шаром, к наружной поверхности которого был присоединен очень чувствительный гальванометр, чтобы следить за зарядом на поверхности; гальванометр был такой, что даже небольшой заряд давал сильные отклонения. Внутри шара Фарадей собрал разнообразное электрическое оборудование. Он создавал заряды, натирая стеклянные палочки кошачьим мехом, и строил большие электростатические машины, так что внутренность шара походила на лабораторию из фильма ужасов. Но в ходе всех его экспериментов на поверхности не появлялось никакого заряда; создать заряд было невозможно. Хотя стеклянная палочка заряжалась положительно, когда ее терли кошачьим мехом, мех получал точно такое же количество отрицательного заряда, и суммарный заряд всегда был равен нулю. Если бы внутри шара заряд создавался, то гальванометр, присоединенный снаружи, показал бы это. Итак, полный заряд сохраняется.
Это нетрудно объяснить на очень простой модели, совсем не математической. Предположим, что мир состоит из частиц двух видов, электронов и протонов, - было время, когда он действительно представлялся людям настолько простым, - и предположим, что электроны несут отрицательный заряд, а протоны - положительный, так что мы можем их разделить. Мы можем взять кусок материала и отнять у него часть электронов или, наоборот, добавить. Но если считать, что сами электроны неизменны, не исчезают и не распадаются (это очень простое предположение, не имеющее сношения к математике), то.разность между общим числом кротонов и общим числом электронов меняться не будет. Больше того, в нашей простой модели не будет меняться ни одно из этих двух чисел. Но вернемся к зарядам. Вклад протонов положителен, а электронов - отрицателен, и если эти частицы не создаются и не уничтожаются поодиночке, то полный заряд будет сохраняться. В табл. 1 я перечислил некоторые сохраняющиеся величины; первая из них - заряд. Против вопроса, сохраняется ли заряд, я пишу "Да".
Такая теоретическая модель очень проста, но со временем было обнаружено, что электроны и протоны нельзя считать постоянными и неизменными. Например, частица, называемая нейтроном, может распадаться на протон и электрон плюс что-то еще, о чем мы поговорим позже. Правда, оказывается, что нейтрон электрически нейтрален. Поэтому, хотя протоны и электроны не неизменны в том смысле, что их можно создать из нейтрона, заряд все равно сохраняется. При распаде нейтрона мы начинаем с нулевого заряда и получаем один заряд положительный и один отрицательный, что в сумме дает нуль.
Подобным же примером может служить другая частица, заряженная положительно, но отличная от протона. Она называется позитроном и представляет собой как бы зеркальное изображение электрона. Она во всех отношениях подобна электрону, за исключением того, что несет заряд противоположного знака и, что еще важнее, является античастицей, ибо, встретившись, электрон и позитрон взаимно уничтожаются и превращаются в свет. Так что сами по себе электроны не вечны. Электрон плюс позитрон дают свет. Этот свет, невидимый глазу, гамма-излучение; но видимый свет и гамма-излучение для физика - одно и то же, у них лишь разная длина волн. Таким образом, частица и соответствующая ей античастица могут взаимно уничтожаться, аннигилировать. Свет не имеет электрического заряда, но тут уничтожается один положительный и один отрицательный заряд, и суммарный заряд остается прежним. Таким образом, теория сохранения заряда немного усложняется, но по-прежнему имеет мало отношения к математике. Вы просто складываете число протонов с числом позитронов и отнимаете число электронов, а кроме того, учитываете другие частицы, например отрицательные антипротоны и положительные ?+-мезоны, ибо каждая элементарная частица несет заряд (возможно, равный нулю). Нам надо лишь сложить все заряды и найти общий, и, что бы ни случилось потом, какая бы реакция ни произошла, он будет оставаться постоянным.
Это одна сторона закона сохранения заряда. Теперь возникает интересный вопрос. Достаточно ли сказать, что заряд просто сохраняется, или надо еще что-нибудь добавить? Если бы заряд представлял собой вещественную подвижную частицу и сохранялся благодаря этому, то сохранение было бы гораздо более конкретным свойством. Мыслимы два возможных способа сохранения заряда внутри ящика. Первый способ - заряд перемещается внутри ящика из одного места в другое. Другая возможность состоит в том, что заряд в одном месте исчезает и в то же самое мгновение возникает в другом месте; это происходит одновременно, и общий заряд по-прежнему остается постоянным. Вторая возможность сохранения отличается от первой, когда для исчезновения заряда в одном месте и появления его в другом что-то должно перемещаться в промежуточном пространстве. Первая форма сохранения называется локальным сохранением зарядов и несет в себе гораздо больше смысла, чем простое утверждение о неизменности полного заряда. Как видите, мы уточняем наш закон - если действительно заряд сохраняется локально. А это действительно так.
Время от времени я пытался продемонстрировать вам возможности логики, позволяющей связывать одну идею с другой, и теперь хочу проследить с вами за рассуждениями Эйнштейна, который пришел к выводу, что если некоторая величина сохраняется (в данном случае речь пойдет о заряде), то она сохраняется локально. Это рассуждение основывается на следующем: если два человека пролетают друг мимо друга в космических кораблях, то вопрос о том, кто из них движется, а кто стоит на месте, нельзя решить путем эксперимента. Это так называемый принцип относительности; он гласит, что равномерное движение по прямой линии относительно. Для обоих наблюдателей любое физическое явление будет выглядеть одинаково и не скажет им, кто из них стоит и кто движется.
Пусть у нас есть два космических корабля, А и В (рис. 18). Предположим, я придерживаюсь того мнения, что корабль В стоит, а корабль А движется мимо него. Запомните, что это только мое мнение. Вы можете стать на другую точку зрения, хотя и видите те же самые явления природы. Предположим теперь, что внутри корабля находится человек, который хочет выяснить, одновременно ли происходит исчезновение заряда в одном конце корабля и возникновение его в другом. Чтобы быть уверенным в одновременности этих событий, он не должен сидеть в носу корабля, иначе он увидит одно раньше другого, так как свет с кормы дойдет до него не сразу. Поэтому будем считать, что он поместился точно посредине корабля. Другой человек занимается такими же наблюдениями в своем корабле. Ударяет молния; в точке х создается заряд, и в тот же самый миг в другом конце корабля, в точке у, заряд уничтожается, исчезает. Заметьте, что это происходит одновременно, в полном соответствии с нашими представлениями о сохранении заряда.