Наука логики - Дебольский Г. Н. Страница 57
Уже первое снятие, отрицание качества вообще, благодаря которому полагается определенное количество, есть в себе снятие отрицания, определенное количество есть снятая качественная граница, следовательно, снятое отрицание, - но в то же время оно таково лишь в себе; положено же оно как наличное бытие, а затем его отрицание фиксировано как бесконечное, как потустороннее определенного количества, которое остается по ею сторону как нечто непосредственное', таким образом, бесконечное определено лишь как первое отрицание, и таковым оно выступает в бесконечном прогрессе. Но мы уже показали, что в бесконечном прогрессе имеется нечто большее, имеется отрицание отрицания, или то, что бесконечное есть поистине. Ранее мы это рассматривали так, что тем самым восстановлено понятие определенного количества; это восстановление означает прежде всего, что его наличное бытие получило свое более точное определение, а именно возникло определенное количество, определенное в соответствии со своим понятием и отличное от непосредственного определенного количества; внешность есть теперь противоположность самой себе, положена как момент самой величины, - возникло определенное количество, взятое так, что оно посредством своего небытия, бесконечности, имеет свою определенность в другом определенном количестве, т. е. есть качественно то, что оно есть. Однако это сравнение понятия определенного количества с его наличным бытием свойственно больше нашей рефлексии - отношению, которого здесь еще нет. Ближайшее определение таково: определенное количество возвращено к качеству, определено отныне качественно. Ибо его особенность, его качество - это внешность, безразличие определенности, и оно теперь положено как то, что в своей внешности есть скорее оно же само, соотносится в ней с самим собой, определено в простом единстве с собой, т. е. качественно. - Это качественное определено еще более точно, а именно как для-себя-бытие, ибо соотношение с самим собой, к которому оно пришло, появилось из опосредствования, из отрицания отрицания. Определенное количество имеет бесконечность, для-себя-определенность уже не вовне себя, а в самом себе.
Бесконечное, имеющее в бесконечном прогрессе лишь ничтожное значение небытия, недостигнутого, но искомого потустороннего, есть на самом деле не что иное, как качество. Определенное количество как безразличная граница переступает само себя в бесконечность; тем самым оно не ищет ничего иного, кроме для-себя-определенности, качественного момента, который, однако, таким образом есть лишь долженствование. Его безразличие к границе, следовательно, отсутствие у него для-себя-сущей определенности и его выхождение за само себя есть то, что делает определенное количество определенным количеством; это его выхождение должно подвергнуться отрицанию и найти себе в бесконечном свою абсолютную определенность.
В самом общем виде: определенное количество - это само снятое качество; но определенное количество бесконечно, выходит за свои пределы, оно отрицание себя; это его выхождение есть, следовательно, в себе отрицание подвергнутого отрицанию качества, восстановление его; и положено именно то, что внешность, выступавшая как потустороннее, определена как собственный момент определенного количества.
Определенное количество этим положено как оттолкнутое от себя, вследствие чего, стало быть, имеются два определенных количества, которые, однако, сняты, даны лишь как моменты одного единства, и это единство есть определенность определенного количества. - Последнее, соотнесенное, таким образом, в своей внешности с собой как безразличная граница и, следовательно, положенное качественно, есть количественное отношение. - В самом отношении определенное количество внешне себе, отлично от самого себя; эта его внешность есть соотношение одного определенного количества с другим определенным количеством, каждое из которых значимо лишь в этом своем соотношении со своим иным; и это соотношение составляет определенность определенного количества, данного как такое единство. Определенное количество имеет в нем не безразличное, а качественное определение, в этой своей внешности возвратилось в себя, есть в ней то, что оно есть.
Примечание 1
Определенность понятия математического бесконечного
Математическое бесконечное интересно, с одной стороны, ввиду расширения [сферы] математики и ввиду великих результатов, достигнутых благодаря введению его в математику; с Другой же стороны, оно достойно внимания по той причине, что этой науке еще не удалось посредством понятия (понятия в собственном смысле) обосновать правомерность его применения. Все обоснования зиждутся в конечном счете на правильности результатов, получающихся при помощи этого определения, правильности, доказанной из других оснований, но не на ясности предмета и действий, благодаря которым достигнуты эти результаты; более того: признается даже, что сами эти действия неправильны.
Это уже само по себе недостаток; такой образ действия ненаучен. Но он влечет за собой еще и тот вред, что математика, не зная природы этого своего орудия из-за того, что не справилась с его метафизикой и критикой, не могла определить сферу его применения и предохранить себя от злоупотребления им.
В философском же отношении математическое бесконечное важно потому, что в его основе действительно лежит понятие истинного бесконечного и оно куда выше, чем обычно называемое так метафизическое бесконечное, исходя из которого выдвигаются против него возражения. От этих возражений математическая наука часто умеет спасаться лишь тем, что она отвергает компетенцию метафизики, утверждая, что ей нет дела до этой науки, что ей нечего заботиться о ее понятиях, если только она действует последовательно на своей собственной почве. Она-де должна рассматривать не то, что истинно в себе, а то, что истинно в ее области. При всех своих возражениях против математического бесконечного метафизика не может отрицать или опровергнуть блестящие результаты, которые дало его применение, а математика не в состоянии точно выяснить метафизику своего собственного понятия, а потому не в состоянии также и дать основание (Ableitung) тех приемов, которые делает необходимыми применение бесконечного.
Если бы над математикой тяготело одно лишь затруднение, причиняемое понятием вообще, то она могла бы без околичностей оставить его в стороне, поскольку именно понятие есть нечто большее, чем только указание сущностных определенностей, т. е. рассудочных определений той или иной вещи, а упрекнуть математику в недостаточной строгости этих определенностей никак нельзя; [она могла бы оставить в стороне это затруднение], ибо не принадлежит к тем наукам, которые должны иметь дело с понятиями своих предметов и образовать свое содержание через развитие понятия, хотя бы только путем резонерства. Но применяя метод своего бесконечного, она находит главное противоречие в самбм характерном для нее методе, на котором она вообще основывается как наука. Ибо исчисление бесконечного разрешает и требует таких приемов, которые она должна отвергать, оперируя конечными величинами, и в то же время она обращается со своими бесконечными величинами как с конечными определенными количествами и хочет применять к первым те же приемы, которые применяются к последним. Очень важно для развития этой науки то, что она нашла для трансцендентных определений и действий над ними форму обычного исчисления (Kalkuls).
При всей этой противоречивости своих действий математика показывает, что результаты, которые она получает посредством их, вполне совпадают с теми, которые она получает с помощью собственно математического метода, геометрического и аналитического метода. Однако, с одной стороны, это касается не всех результатов, и цель введения [математического] бесконечного не только сокращение обычного пути, а достижение результатов, которых последний дать не может. С другой же стороны, успех сам по себе не может служить оправданием характера пути (die Manier des Wegs). А этот характер исчисления бесконечного отягощен видимостью неточности, которую он сам себе придает, увеличивая конечные величины на бесконечно малую величину и отчасти сохраняя эту последнюю в дальнейших действиях, отчасти же и пренебрегая ею. Этот прием заключает в себе ту странность, что, несмотря на признаваемую неточность, получается результат, который не только довольно точен и столь близок [к истинному результату ], что можно не обращать внимания на разницу, но и совершенно точен. В самом же действии, предшествующем результату, нельзя обойтись без представления, что некоторые величины не равны нулю, но они столь незначительны, что их можно оставить без внимания. Однако в том, что понимают под математической определенностью, совершенно отпадает всякое различие между большей или меньшей точностью, подобно тому как в философии может идти речь не о большей или меньшей вероятности, а единственно лишь об истине. Если метод и применение бесконечного и находят оправдание в успехе, то все же требовать их обоснования не так излишне, как представляется излишним, например, требование доказать право пользоваться собственным носом. Ведь в математическом познании как познании научном существенное значение имеет доказательство, а в отношении получаемых результатов также оказывается, что строго математический метод не для всех их доставляет аргумент успеха, который к тому же есть лишь внешний аргумент.