Наука логики - Дебольский Г. Н. Страница 61

Но имеется еще дальнейшая ступень, на которой математическое бесконечное обнаруживает свою специфику. В уравнении, в котором х и у положены прежде всего как определенные некоторым степенным отношением, х и у, как таковые, должны еще означать определенные количества; и вот это значение совершенно утрачивается в так называемых бесконечно малых разностях, dx, dy уже не определенные количества и не должны иметь значение таковых, а имеют значение лишь в своем соотношении, имеют смысл только как моменты. Они уже не нечто, если принимать нечто за определенное количество, они не конечные разности; но они и не ничто, не нуль, лишенный определения. Вне своего отношения они чистые нули, но их следует брать только как моменты отношения, как определения дифференциального коэффициента .-.

В этом понятии бесконечного определенное количество поистине завершено в некоторое качественное наличное бытие; оно положено как действительно бесконечное; оно снято не только как то или иное определенное количество, а как определенное количество вообще. Но [при этом ] сохраняется количественная определенность как элемент определенных количеств, как принцип или, как еще говорили, она сохраняется в своем первом понятии.

Против этого понятия и направлены все те нападки, которым подверглось основное данное математикой определение этого бесконечного дифференциального и интегрального исчисления. Неправильные представления самих математиков привели к непризнанию этого понятия; но виновна в этих нападках главным образом неспособность обосновать этот предмет как понятие. Однако понятие, как было указано выше, математика не может здесь обойти, ибо как математика бесконечного она не ограничивается рассмотрением конечной определенности своих предметов (как, например, в чистой математике пространство и число и их определения рассматриваются и соотносятся друг с другом лишь со стороны их конечности), а приводит заимствованное оттуда и трактуемое ею определение в тождество с его противоположностью, превращая, например, кривую линию в прямую, круг - в многоугольник и т. д. Поэтому действия, к которым она позволяет себе прибегать в дифференциальном и интегральном исчислении, находятся в полном противоречии с природой чисто конечных определений и их соотношений и, стало быть, могли бы найти свое обоснование только в понятии.

Если математика бесконечного настаивала на том, что эти количественные определения суть исчезающие величины, т. е. такие, которые уже не определенные количества, но и не ничто, а сохраняют еще некоторую определенность относительно другого, то [нападавшим на нее] казалось совершенно ясным, что нет, как они выражались, никакого среднего состояния между бытием и ничто. - Каково значение этого возражения и так называемого среднего состояния, это уже было показано выше при рассмотрении категории становления (примечание 4). Конечно, единство бытия и ничто не есть состояние; состояние было бы таким определением бытия и ничто, в которое эти моменты, так сказать, попали только случайно, как бы впав в болезнь или подвергшись внешнему воздействию со стороны ошибочного мышления; скорее лишь эта средина и это единство, исчезание, или, что то же, становление, и есть их истина.

То, что бесконечно, говорили далее, не подлежит сравнению как большее или меньшее; поэтому не может быть отношения бесконечного к бесконечному по разрядам или рангам бесконечного, а между тем такие различия бесконечных разностей встречаются в науке, трактующей о них. - Это уже упомянутое выше возражение все еще исходит из представления, будто здесь идет речь об определенных количествах, сравниваемых как определенные количества, и что определения, которые уже не определенные количества, не имеют больше никакого отношения друг к другу. В действительности же дело обстоит наоборот: то, что только находится в отношении, не есть определенное количество. Определенное количество есть такое определение, которое вне своего отношения должно иметь совершенно безразличное [к другим] наличное бытие и которому должно быть безразлично его отличие от иного, между тем как качественное есть лишь то, что оно есть в своем отличии от иного. Поэтому указанные бесконечные величины не только сравнимы, но существуют лишь как моменты сравнения, отношения.

Я приведу важнейшие определения, которые были даны в математике относительно этого бесконечного; тогда станет ясно, что они исходят из мысли о самом предмете, согласующейся с развитым здесь понятием, но что их авторы не исследовали этой мысли как понятие, и в применении они вынуждены были прибегать к уловкам, противоречащим тому, чего они хотели добиться.

Эту мысль нельзя определить более правильно, чем это сделал Ньютон. Я оставлю здесь в стороне определения, принадлежащие представлению о движении и скорости (от которых он главным образом и заимствовал название флюксий), так как в них мысль выступает не в надлежащей абстрактности, а конкретно, смешанно с несущественными формами. Эти флюксии объясняются Ньютоном таким образом (Princ. mathein. phil. nat. L. 1. Lemma XI. Schol.), что он понимает под ними не неделимые - форма, которой пользовались до него математики Кавальери и другие и которая содержит понятие определенного в себе кванта, а исчезающие делимые. Он понимает под ними, кроме того, не суммы и отношения определенных частей, а пределы (limites) сумм и отношений. Против этого, говорит Ньютон, выдвигают возражение, что у исчезающих величин не может быть никакого

последнего отношения, так как прежде чем они исчезли, оно не последнее, а когда они исчезли, нет уже никакого отношения. Но под отношением исчезающих величин следует понимать не то отношение, которое имеет место до или после их исчезновения, а то отношение, вместе с которым они исчезают (quacum evanescunt). Точно так же и первое отношение возникающих величин есть отношение, вместе с которым они возникают.

В соответствии с состоянием научного метода того времени давалось лишь объяснение, что под таким-то термином следует понимать то-то. Но объяснение, что под таким-то термином следует понимать то-то, есть, собственно говоря, лишь субъективное предложение или же историческое требование, причем не показывают, что такое понятие в себе и для себя необходимо и обладает внутренней истинностью. Но из сказанного видно, что выставленное Ньютоном понятие соответствует тому, чем оказалась в приведенном выше изложении бесконечная величина на основании рефлексии определенного количества внутрь себя. [Под флюксиями Ньютон ] понимает величины в их исчезновении, т. е. величины, которые уже не определенные количества; он понимает под ними, кроме того, не отношения определенных частей, а пределы отношения. Следовательно, исчезают, согласно этому пониманию, и определенные количества сами по себе, члены отношения, и само отношение, поскольку оно было определенным количеством; предел отношения величин - это то, в чем оно есть и не есть; это означает, точнее, что он есть то, в чем определенное количество исчезло, и тем самым сохранились отношение только как качественное отношение количества и его члены - также как качественные моменты количества. - Ньютон к этому прибавляет, что из того обстоятельства, что имеются последние отношения исчезающих величин, не следует заключать, что имеются последние величины, неделимые. Это было бы опять-таки отходом от абстрактного отношения к таким его членам, которые должны были бы сами по себе, вне своего соотношения, иметь значение как неделимые, как нечто, что было бы "одним", безотносительным.

Чтобы предостеречь против этого недоразумения, он, кроме того, напоминает, что последние отношения - это не отношения последних величин, а только пределы, к которым отношения беспредельно убывающих величин ближе, чем всякое данное, т. е. конечное различие, за которые, однако, они не выходят, чтобы не стать ничем. - Под последними величинами можно было бы, как сказано, понимать именно неделимые, или "одни". Но из определения последнего отношения устранено представление и о безразличном, безотносительном "одном", и о конечном определенном количестве. - Но не нужно было бы ни беспредельного убывания, которое Ньютон приписывает определенному количеству и которое лишь служит выражением бесконечного прогресса, ни определения делимости, которое уже не имеет здесь никакого прямого значения, если бы требуемое определение было развито в понятие такого определения величины, которое есть исключительно лишь момент отношения.