Наука логики - Дебольский Г. Н. Страница 71

Так как a=s/t2 , то вообще 2at=2s/t, но этим мы нисколько не

подвинулись вперед в нашем знании; лишь ошибочное предположение, будто 2at есть часть движения как некоторой суммы, дает ложную видимость положения физики. Самый множитель, а, эмпирическая единица - некоторое определенное количество, как таковое, - приписывается тяготению; если здесь применяют категорию силы тяготения, то нужно сказать, что, наоборот, как раз целое s=at2 есть действие или, лучше сказать, закон тяготения. - Также верно и выведенное из ds/dt=2at положение, что если бы прекратилось действие силы тяжести, то тело со скоростью, достигнутой им в конце своего падения, прошло бы во время, равное времени его падения, пространство вдвое большее пройденного. - В этом положении заключается также и сама по себе превратная метафизика: конец падения или конец той части времени, в которое падало тело, всегда сам еще есть некоторая часть времени; если бы он не был частью времени, то наступил бы покой, и, следовательно, не было бы никакой скорости; скорость может быть измерена лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, кроме того, и в других физических областях, где вовсе нет никакого движения, как, например, в действии света (помимо того, что называют его распространением в пространстве) и в определениях величин у цветов, применяют дифференциальное исчисление, и первая [производная] функция некоторой квадратной функции здесь

также именуется скоростью, то это следует рассматривать как еще более неуместный формализм выдумывания существования.

Движение, изображаемое уравнением s = at2, говорит Лагранж, мы находим при падении тел; простейшим следующим за ним было бы движение, уравнением которого было бы s=ct3, но такого рода движения не оказывается в природе; мы не знали бы, что мог бы означать собой коэффициент с. Если это верно, то, напротив, имеется движение, уравнение которого - s3 ° at2 - кеплеровский закон движения тел Солнечной системы. И выяснение того, что здесь должна означать первая производная функция -у и т. д., а также дальнейшая непосредственная разработка этого уравнения путем дифференцирования, открытие законов и определений указанного абсолютного движения, отправляясь от этой исходной точки, должно бы, конечно, представлять собой интересную задачу, в решении которой анализ явил бы себя в самом надлежащем блеске.

Само по себе взятое таким образом применение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес проистекает из общего механизма исчисления. Но иное значение приобретает разложение движения в отношении определения его траектории; если последняя есть кривая и ее уравнение содержит более высокие степени, то требуются переходы от прямолинейных функций как функций возведения в степень к самим степеням, а так как первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени с элиминированием времени, то этот фактор должен быть также низведен к тем низшим функциям, которые получаются в результате разложения в ряд и из которых можно выводить указанные уравнения линейных определений. Эта сторона возбуждает интерес к другой части дифференциального исчисления.

Сказанное доселе имело своей целью выделить и установить простое специфическое определение дифференциального исчисления и показать это определение на некоторых элементарных примерах. Это определение, как оказалось, состоит в том, что из уравнения степенных функций находят коэффициент члена разложения, так называемую первую [производную] функцию, и что отношение, которое она есть, обнаруживают в моментах конкретного предмета, и посредством полученного таким образом уравнения между обоими отношениями определяются сами эти моменты. Следует немного рассмотреть и принцип интегрального исчисления и установить, что получается из его применения для специфического конкретного определения этого исчисления. Понимание последнего было нами упрощено и определено более правильно уже тем, что мы его больше не принимаем за метод суммирования, как его назвали в противоположность дифференцированию (в котором приращение считается сущностной составной частью), вследствие чего интегрирование представлялось находящимся в сущностной связи с формой ряда. - Задача этого исчисления прежде всего такая же теоретическая или, скорее, формальная задача, как и задача дифференциального исчисления, но, как известно, обратная последней. Здесь исходят из функции, рассматриваемой как производная, как коэффициент ближайшего члена, получающегося в результате разложения в ряд некоторого, пока еще неизвестного уравнения, а из этой производной должна быть найдена первоначальная степенная функция; та функция, которую в естественном порядке разложения в ряд следует считать первоначальной, здесь производная, а рассматривавшаяся ранее как производная есть здесь данная или вообще начальная. Но формальная сторона этого действия представляется уже выполненной дифференциальным исчислением, так как в последнем установлены вообще переход и отношение первоначальной функции к функции, получающейся в результате разложения в ряд. Если при этом отчасти уже для того, чтобы взяться за ту функцию, из которой следует исходить, отчасти же для того, чтобы осуществить переход от нее к первоначальной функции, оказывается необходимым во многих случаях прибегнуть к форме ряда, то следует прежде всего твердо помнить, что эта форма, как таковая, не имеет непосредственно ничего общего с собственным принципом интегрирования.

Но другой частью задачи этого исчисления оказывается с точки зрения формальной стороны действия его применение. А последнее само есть задача узнать, какое предметное значение в указанном выше смысле имеет первоначальная функция, [которую мы находим по] данной функции, рассматриваемой как первая [производная] функция отдельного предмета. Могло бы казаться, что это учение, взятое само по себе, нашло свое полное применение уже в дифференциальном исчислении. Однако здесь возникает еще одно обстоятельство, осложняющее все дело. А именно, так как в этом исчислении оказывается, что благодаря первой [производной] функции уравнения кривой получилось некоторое линейное отношение, то тем самым мы также знаем, что интегрирование этого отношения дает уравнение кривой в виде отношения абсциссы и ординаты; другими словами, если бы было дано уравнение для поверхности, образуемой кривой, то дифференциальное исчисление должно было бы уже научить нас относительно значения первой [производной] функции такого уравнения, что эта функция представляет ординату как функцию абсциссы, стало быть, представляет уравнение кривой.

Но все дело здесь в том, какой из моментов определения предмета дан в самом уравнении; ведь лишь из данного может исходить аналитическое исследование, чтобы переходить от него к прочим определениям предмета. Дано, например, не уравнение поверхности, образуемой кривой, и не уравнение тела, возникающего посредством ее вращения, а также не уравнение некоторой дуги этой кривой, а лишь отношение абсциссы и ординаты в уравнении самой кривой. Переходы от указанных определений к самому этому уравнению нельзя уже поэтому исследовать в самом дифференциальном исчислении; нахождение таких отношений есть дело интегрального исчисления.

Далее, однако, было показано, что дифференцирование уравнения с несколькими переменными величинами дает степенной член разложения (die Entwicklungspotenz) или дифференциальный коэффициент не как уравнение, а только как отношение; задача состоит затем в том, чтобы в моментах предмета указать для этого отношения, которое есть производная функция, другое, равное ему. Предмет же интегрального исчисления - само отношение первоначальной к производной функции, которая должна быть здесь данной, и задача состоит в том, чтобы указать значение искомой первоначальной функции в предмете данной первой [производной] функции или, вернее, так как это значение, например поверхность, образуемая кривой, или подлежащая выпрямлению кривая, представляемая в виде прямой, и т. д., уже .выражено как задача, то требуется показать, что подобного рода определение можно найти посредством некоторой первоначальной функции, и показать, каков момент предмета, который для этой цели должен быть принят за исходную (производную) функцию.