Великая Теорема Ферма - Аверьянова Н. Л. "Zenzen". Страница 2

То, что теорема Ферма не была доказана так долго, придает ей особую значимость. Трудно привести еще какую-нибудь проблему из любой области науки, которая была бы сформулирована столь просто и ясно и выдержала бы проверку все прогрессирующего знания на протяжении столь большого промежутка времени. Вспомним гигантские успехи, достигнутые в развитии физики, химии, медицины и инженерного дела с XVIII века. От «гуморов» в медицине мы поднялись до расщепления гена на составные части, открыли элементарные частицы из которых состоит атом, высадили людей на Луну, но в теории чисел Великая теорема Ферма продолжала оставаться неприступной крепостью.

Проводя свои изыскания, я хотел понять, почему Великая теорема Ферма так существенна (и не только для математиков) и почему так важно создать фильм о ней. Математика имеет множество практических приложений. В случае теории чисел, самые интересные из них, на мой взгляд, встречаются в криптографии, проектировании глушителей акустических сигналов и задачах связи с космическими кораблями, находящимися на большом удалении. Ни одно из этих приложений, насколько можно судить, не может быть особенно привлекательным для широкой аудитории. Гораздо более привлекательными были сами математики, и та горячность, с которой они говорили о проблеме Ферма.

Математика — одна из наиболее чистых форм мышления, и для посторонних математики могут показаться людьми не от мира сего. Во всех моих беседах с математиками меня поражала необычайная точность, с которой они выражали свои мысли. На сложный вопрос ответ приходилось ждать, пока точная структура не вырисовывалась со всей четкостью в уме математика, но зато потом следовал такой ясный и четкий ответ, о каком я мог только мечтать. Когда я спросил об этом Питера Сарнака, приятеля Эндрю, он объяснил мне, что математики просто терпеть не могут высказывать ложные утверждения. Разумеется, они используют интуицию и не чужды вдохновения, но формальные суждения должны быть логически безупречными. Доказательство лежит в самом сердце математики, и это то, что отличает математику от других наук. В других науках имеются гипотезы, проверяемые на экспериментальных данных и в конце концов отвергаемые и заменяемые новыми гипотезами. В математике целью является логически безупречное, абсолютное, доказательство, и то, что доказано, доказано на вечные времена — для каких-либо изменений не остается места. Великая теорема Ферма стала величайшим вызовом математикам, и тот, кто сумел бы решить проблему Ферма, заслужил бы восторженное поклонение всего математического сообщества.

За ее доказательство предлагались призы; процветало соперничество. У Великой теоремы Ферма богатая история, знавшая смерть и мошенничество. Она оказала определенное влияние на развитие математики. По словам профессора математики Гарвардского университета Барри Мазура, Ферма вдохнул жизнь в те разделы математики, которые были связаны с первыми попытками доказать Великую теорему. По иронии судьбы, оказалось, что один из именно таких разделов математики занял центральное место в окончательном варианте доказательства Уайлса.

Постепенно проникаясь пониманием незнакомой мне ранее области, я пришел к заключению, что Великая теорема Ферма сыграла главную роль в развитии математики и что ее история шла параллельно истории самой математики. Ферма стал отцом современной теории чисел. С того времени, когда он жил и работал, математика обрела новую жизнь, стала развиваться и разделилась на множество областей, в рамках которых новые методы способствовали возникновению новых результатов или прекратили свое развитие, исчерпав проблематику. По прошествии веков Великая теорема Ферма, казалось, все больше отходила от переднего края математических исследований, все более превращаясь в курьез. Но как теперь стало ясно, она не утратила своего центрального места в математике.

Проблемы, связанные с числами, — вроде той, которую сформулировал Ферма, — служат своего рода испытательным полигонами для разгадывания головоломок, а математики очень любят разгадывать головоломки. Для Эндрю Уайлса Великая теорема Ферма стала головоломкой особого рода: решить ее стало мечтой всей его жизни. Тридцать лет назад, когда он еще был мальчишкой, Великая теорема Ферма поразила его воображение и навсегда запала в сердце. Летом 1993 года ему удалось найти ее доказательство в результате семилетней самоотверженной работы над проблемой, потребовавшей от него такой сосредоточенности и решимости, какие трудно себе представить. Многие из использованных им методов еще не были созданы, когда он приступил к работе. Он слил воедино труды многих превосходных математиков, установил взаимосвязи между различными идеями и разработал новые понятия, о которых другие математики боялись даже думать. В каком-то смысле, как сказал Барри Мазур, оказалось, что все размышляли над проблемой Ферма, но размышляли порознь, не помышляя о том, чтобы найти ее решение, потому что доказательство Великой теоремы Ферма потребовало бы всей мощи современной математики. То что сделал Эндрю, сводилось к восстановлению связей между разделами математики, казалось, разошедшимися навсегда. Его работа поэтому стала своего рода оправданием всей диверсификации, которую претерпела математика с тех пор, как была сформулирована проблема Ферма.

История Великой теоремы Ферма завершилась самым эффективным образом. Для Эндрю Уайлса найденное им доказательство означало конец изоляции, почти чуждой математике, которая обычно представляет собой коллективную деятельность. В нарушение всех традиций Уайлс хранил молчание о своей работе вплоть до ее заключительной стадии. И его молчание служило мерой значительности Великой теоремы Ферма. Уайлс был движим реальной страстью — желанием во что бы то ни стало стать тем, кто решит проблему Ферма, страстью столь сильной, что она заставила Уайлса посвятить семь лет своей жизни осуществлению своего намерения и следовать достижению поставленной цели. Уайлс превосходно знал, что сколько малозначительной ни считали проблему Ферма его коллеги-математики, накал состязания за решение этой проблемы не ослабевал, и поэтому Уайлс не мог рискнуть, заявив во всеуслышание о том, что он пытается найти доказательство Великой теоремы Ферма.

Проведя долгие недели за изучением того, что происходит в математике, я прибыл в Принстон. Для математиков накал эмоций был очень высок. Мне открывалась история соперничества, успеха, одиночества, гения, триумфа, ревности, жестокого прессинга, утрат и даже трагедии. В центре гипотезы Шимуры-Таниямы, сыгравшей решающую роль в решении Великой теоремы Ферма, была трагическая послевоенная жизнь в Японии Ютаки Таниямы, историю которого я имел честь выслушать от его близкого друга Горо Шимуры. От Шимуры я узнал также о понятии «доброкачественности» в математике, где все хорошо оттого, что все отличного качества. Каким-то образом ощущение доброкачественности в то лето пронизывало атмосферу математики. Все наслаждались знаменательным моментом.

Учитывая все сказанное, не приходится удивляться тому грузу ответственности, который ощутил Эндрю, когда осенью 1993 года стало ясно, что в его доказательстве допущена ошибка. Взоры всего мира были обращены на него, коллеги призывали его опубликовать подробное доказательство, в том или в ином виде (только он один знал, в каком именно виде), но главное было в том, что строгого доказательства у него не было! Роковой переход от занятий математикой в домашней обстановке и продвижения в собственном темпе к работе на публике был совершен. Эндрю человек глубоко домашний, и он изо всех сил боролся за то, чтобы оградить свою семью от разразившейся вокруг него бури. Всю неделю, которую мне довелось провести в Принстоне, я звонил, оставлял записки в офисе, у дверей его квартиры, передавал через его друзей… Но Уайлс упорно сопротивлялся всем моим «подходам» пока у меня не остался один-единственный шанс повидаться с ним в день моего отъезда. Последовала тихая насыщенная беседа, которая продлилась всего-навсего пятнадцать минут.