Радио?.. Это очень просто! - Смирнова Ю. Л.. Страница 27

Радио?.. Это очень просто! - _214.jpg

Рис. 78. Окончательная схема приемника.

Н. — Подожди… Меня очень интригует другая вещь: это катушки L1, L2, L3, L4 и L5, которые как бы состоят из трех частей.

Радио?.. Это очень просто! - _215.jpg
ВОЛНА ВОЛНЕ РОЗНЬ
Радио?.. Это очень просто! - _216.jpg

Л. — Это требует объяснения. Ты знаешь, что во всем мире имеется очень большое число радиовещательных передатчиков. Длины волн в радиовещании распределены в трех основных диапазонах. Это длинные волны (ДВ) от 1000 до 2 000 м, средние волны (СВ) от 200 до 600 м и короткие волны (КВ) от H до 50 м. Каждому из этих диапазонов соответствует одна из трех обмоток, образующих катушку. Любую из них можно включить в контур с помощью переключателя П.

Н. — Но в таком случае для перехода с диапазона на диапазон нужно одновременно изменить положение пяти переключателей. Требуется ли для быстрого переключения иметь, подобно пауку, большое число лап?

Л. — О нет, не волнуйся, Незнайкин. Все контакты переключаются одновременно с помощью одной ручки управления.

Н. — К счастью, в нашем приемнике имеются лишь три диапазона. Иначе это было бы дьявольски сложно.

Л. — В действительности передачи ведут и на других волнах. Однако и в этих трех диапазонах нужно по крайней мере пять катушек, чтобы перекрыть весь интервал от 10 до 2 000 м с помощью конденсатора переменной емкости 500 пф. Поэтому приходится применять переключатель на пять положений (рис. 79).

Радио?.. Это очень просто! - _217.jpg

Рис. 79. Схема переключения пяти диапазонов.

Н. — Я снова смотрю на схему приемника (рис. 78) и не могу понять странный способ включения конденсатора С7. По-видимому, этот конденсатор совместно с резистором R7 служит для развязки анодной цепи первой лампы. Но почему он входит в цепь контура L3C15?

Л. — По очень простой причине. В современных конденсаторах переменной емкости подвижные пластины связаны с металлическим корпусом конденсатора (изолированы только неподвижные пластины). В свою очередь корпус конденсатора укреплен на металлическом шасси, которое, как известно, связано с отрицательным полюсом источника высокого напряжения. Подвижные пластины конденсатора С16 должны быть обязательно соединены с минусом источника питания. В то же время катушка L3 через резистор R7 соединена с полюсом. Следовательно, конденсатор C16 надо отделить от катушки L3 по постоянному напряжению, не разрывая, однако, колебательный контур по высокой частоте. Это легко достигается применением конденсатора С7 большой емкости. Он создает свободный путь для токов высокой частоты и препятствует замыканию высокого напряжения через резистор R7.

На этом мы пока можем закончить нашу беседу, тем более что даже башенные часы уже пробили полночь.

Радио?.. Это очень просто! - _218.jpg
ОБМАНЧИВАЯ ТЕРМИНОЛОГИЯ

Н. — Расскажи еще, к чему эта стрелка, упирающаяся в резистор R14?

Л. — В действительности это переменный резистор, включенный потенциометром…

Н. — Это что же, прибор для измерения потенциала?

Л. — Нет, название этого термина ввело тебя в заблуждение. Потенциометр — это резистор с подвижным контактом (обозначенным стрелкой) и выводами на концах. Движок (подвижный контакт) может соединяться с любой из промежуточных точек сопротивления.

Н. — Но для чего же он здесь нужен?

Л. — На резисторе R14 выделяется детектированное напряжение. Иногда оно может быть очень большим, так что после усиления низкой частоты слышимость будет слишком громкой. Чтобы уменьшить громкость звука, на следующую лампу нужно подать только часть детектированного напряжения. Это и можно сделать при помощи потенциометра, движок которого может снимать любую часть напряжения, выделяющегося на всем сопротивлении потенциометра. Таким образом, потенциометр R14 служит для регулировки громкости приема.

Н. — Оказывается, это действительно очень полезно. Я жалею, что мой сосед, обожающий игру на аккордеоне, не пользуется им.

Радио?.. Это очень просто! - _219.jpg

Беседа пятнадцатая

До настоящего времени Любознайкин умышленно обходил вопросы питания приемника. Он говорил об источниках тока накала и анода, не уточняя их свойств. Сегодня Незнайкин познакомится с выпрямлением и фильтрацией переменного тока. Будет рассмотрено также питание приемника от сети постоянного тока, так что вопросы питания не будут больше секретом для читателя.

ВОПРОСЫ ПИТАНИЯ

Незнайкин. — Иногда мне кажется, что я похож на путешественника в пустыне, страдающего от жажды и гоняющегося за соблазнительными миражами. Мне казалось во время нашей последней беседы, что я, наконец, имею полную и окончательную схему радиоприемника. Однако, вернувшись домой, я с огорчением констатировал, что в рассмотренной нами схеме чего-то не хватает.

Любознайкин. — Чего же, мой бедный Незнайкин?

Н. — Очень существенной части — питания, которое ты просто обозначил Ua. Однако не приходит же это напряжение к нам с неба в виде молнии!

Л. — Ты прав, но ты всегда можешь предположить, что питание берется от батареи гальванических элементов или от аккумуляторов.

Радио?.. Это очень просто! - _221.jpg

Н. — Но я вовсе не избегаю такого предположения. Я хорошо знаю, что батареи и аккумуляторы уже давно используются в маленьких портативных приемниках или в установках, предназначенных для удаленных районов, не охваченных электрификацией. Большинство же современных радиоприемников рассчитано на питание от осветительной сети. Как сообщается в рекламах: «Штепсельная розетка — и это все».

Мне не совсем понятно — ведь в большинстве мест электрические сети имеют переменный ток, однако им пользуются для питания анодных цепей ламп

Л. — Это удается благодаря предварительному выпрямлению переменного тока. Выпрямить переменный ток — это значит помешать ему течь в двух направлениях и заставить его течь только в одном направлении.

Н. — Словом, выпрямление — это вроде детектирования?

Л. — Да. Но при детектировании происходит преобразование высокочастотного модулированного сигнала в низкочастотное напряжение, тогда как в случае выпрямления мы имеем дело с током промышленной частоты 50 гц, и, кроме того, выпрямленный ток должен быть достаточно большой величины (несколько десятков миллиампер). Само собой разумеется, что для выпрямления используются диоды, электроды которых больше электродов детекторного диода. Такой диод называется кенотроном.