Расширенный Фенотип: длинная рука гена - Гопко А.. Страница 16

Но я привожу здесь гипотезу “подленького самца” не столько в качестве реалистичного предположения, сколько как наглядный пример того, до какой степени легко и неубедительно выдумывать подобные объяснения (Левонтин (Lewontin, 1979b) использовал такую же дидактическую уловку, рассуждая об обнаруженной гомосексуальности у Drosophila). Главное положение, которое я хочу доказать, совсем другое и куда более важное. Это вновь проблема того, как мы описываем фенотипический признак, который пытаемся объяснить.

Разумеется, гомосексуальность является затруднением для дарвинистов только в том случае, если в различии между гомосексуальным и гетеросексуальным индивидуумами имеется генетический компонент. Покуда это предмет спорный (Weinrich, 1976), давайте для наших рассуждений предположим, что имеется. И теперь возникает вопрос, каков смысл высказывания, что существует генетический вклад в данное различие – в просторечии, “ген (или гены) гомосексуальности”. Ведь это трюизм, недостойный даже называться аксиомой, причем скорее из области логики, нежели генетики, что фенотипический “эффект” гена – понятие, имеющее смысл только в определенном контексте влияний окружающей среды, причем окружающая среда включает в себя и все остальные гены генома. “Ген признака A” в окружении X может запросто оказаться геном признака B в окружении Y. Говорить об абсолютном, бесконтекстном фенотипическом эффекте попросту бессмысленно.

Даже если имеются гены, которые в сегодняшних условиях формируют гомосексуальный фенотип, это не означает, что в других условиях, скажем, в тех, какие были у наших предков в плейстоцене, они должны были оказывать такое же фенотипическое действие. Ген гомосексуальности, существующий в нашей современной среде, мог быть в плейстоцене геном чего-то совершенно иного. Итак, здесь мы обнаружили возможность особой разновидности “эффекта запаздывания во времени”. Может быть так, что фенотип, который мы пытаемся объяснить, даже и не существовал в неких давних условиях среды, и это несмотря на то, что соответствующий ген тогда уже вовсю существовал. Обычный эффект запаздывания, который мы обсуждали в начале настоящего раздела, касался изменений окружающей среды, проявлявшихся в изменении давления отбора. А теперь мы добавили более тонкую мысль, что изменения окружающей среды могут менять саму природу фенотипического признака, который мы беремся объяснять.

Исторически обусловленные ограничения

Реактивный двигатель сменил винтовой потому, что лучше справлялся с большинством задач. Разработчики первого реактивного двигателя начинали с чистой чертежной доски. Представьте себе, что бы они произвели, если бы вынуждены были создавать свой реактивный двигатель из уже существовавшего пропеллерного путем “эволюции”, заменяя по одной детали за раз – гайку за гайкой, шуруп за шурупом, заклепку за заклепкой. Собранный так реактивный двигатель был бы, в самом деле, замысловатым механизмом. Трудно вообразить, что самолет, сконструированный таким эволюционным способом, поднимется когда-нибудь с земли. И это не все: чтобы сделать аналогию с биологическими объектами более полной, мы должны добавить еще одно ограничение. Подниматься в воздух должен не только окончательный вариант, но и все промежуточные, причем каждый из них должен летать лучше своего предшественника. Взглянув в таком свете, мы будем далеки от того, чтобы считать животных совершенными, и сможем только удивляться, как у них вообще хоть что-то работает.

Найти у животных бесспорные примеры устройств, нелепых, будто нарисованных Хитом Робинсоном (или Рубом Голдбергом – Gould, 1978), труднее, чем можно предположить, исходя из предыдущего абзаца. Мой любимый пример, подсказанный профессором Дж. Д. Карри, – возвратный гортанный нерв. У млекопитающих, особенно у жирафа, кратчайший путь от мозга до гортани ни в коем случае не пролегает через заднюю стенку аорты, однако именно там проходит возвратный гортанный нерв. Можно предположить, что когда-то у отдаленных предков млекопитающих прямая линия между выходом данного нерва и его концевым органом проходила сзади от аорты. Когда же, в свой срок, шея начала удлиняться, то и нерв стал увеличивать свой крюк вокруг аорты, однако предельная стоимость каждого этапа удлинения этого окольного пути была небольшой. Значительная мутация могла бы полностью изменить прохождение нерва, но только ценой серьезных нарушений раннего эмбрионального развития. Возможно, что обладающий пророческим даром богоподобный дизайнер мог еще в девоне предвидеть жирафа и изначально направить этот нерв по-другому, но естественный отбор не может предвидеть. Как заметил Сидни Бреннер, нельзя рассчитывать на то, что естественный отбор мог благоприятствовать какой-нибудь бесполезной мутации в кембрии просто потому, что “она могла пригодиться в меловом периоде”.

Достойная кисти Пикассо голова плоских рыб, например камбалы, гротескно вывернутая, чтобы привести оба глаза на одну сторону, – вот еще один впечатляющий пример исторического ограничения совершенства. Эволюционная история этой рыбы так ясно прописана в ее анатомии, что данным примером вполне можно затыкать глотки религиозным фундаменталистам. То же касается и любопытного факта, что сетчатка глаза позвоночных выглядит, как будто ее установили задом наперед. Светочувствительные “фотоэлементы” находятся на задней стороне сетчатки, и свет, чтобы дойти до них, должен, с некоторым неизбежным затуханием, пройти через прилегающие участки электросхемы. Предположим, что возможно описать очень длинную последовательность мутаций, которая в конце концов вела бы к образованию глаза с “правильно повернутой”, как у головоногих моллюсков, сетчаткой, и это в итоге могло бы оказаться немножко более эффективным. Но расходы, связанные с эмбриональными перестройками, были бы так велики, что естественный отбор жестко выбраковывал бы промежуточные формы, благоприятствуя соперничающей, сделанной топорно и при всем том неплохо работающей. Питтендрай (Pittendrigh, 1958) хорошо охарактеризовал образование адаптаций как “мешанину из временных приспособлений, сложенную при первой возможности из того, что было под рукой, и задним числом, а не предусмотрительно, одобренную естественным отбором” (см. также Jacob, 1977 – о “кустарности”).

Метафора Сьюэлла Райта (Wright, 1932), известная под названием “приспособительный ландшафт”, тоже проводит мысль, что отбор в пользу локальных оптимальных значений признаков препятствует эволюции в направлении к более глобальным и, в конечном счете, лучшим оптимумам. Райт делал акцент, отчасти неверно понятый (Wright, 1980), на дрейф генов как на средство, дающее филогенетическим линиям возможность вырваться из-под гнета локальных оптимумов и таким образом ближе подойти к тому, что человеком расценится как “наиболее” оптимальное решение. Это любопытно контрастирует с мыслью Левонтина (Lewontin, 1979b), для которого дрейф – “альтернатива адаптации”. Здесь нет парадокса, как и в случае с плейотропией. Левонтин прав в том, что “из-за ограниченных размеров реально существующих популяций возникают случайные изменения частоты генов, вследствие чего генные комбинации, обладающие меньшей репродуктивной приспособленностью, будут, с некоторой вероятностью, закрепляться в популяции”. Но, с другой стороны, также верно и то, что если локальные оптимумы представляют ограничение для совершенства конструкции, то дрейф будет открывать путь к спасению (Lande, 1976). Ирония, следовательно, в том, что слабость естественного отбора может теоретически уси лить вероятность приобретения организмами оптимального строения! Сам по себе естественный отбор, не будучи способен к предвидению, является в каком-то смысле механизмом против совершенства, стараясь по возможности придерживаться вершин низких предгорий на райтовском ландшафте. А перемежение сильного естественного отбора с периодами ослабления отбора и дрейфом генов может оказаться рецептом для перехода через долины к высокогорным плато. Очевидно, что если нужно будет зарабатывать очки в дебатах по проблеме “адаптационизма”, то обеим спорящим сторонам найдется, где развернуться!