Жизнь без старости - Скулачев Максим В.. Страница 11

Ясно, что мы стареем не из-за мышьяка, который неудобен уже тем, что организм сам его не производит. В то же время есть ядовитые соединения, образуемые в ходе нормального обмена веществ в организме. Это так называемые активные формы кислорода (АФК), которые возникают в клетках нашего тела в процессе дыхания.

Дыхание для человека — синоним жизни. Пока я дышу, пока мое сердце бьется — я жив. Дыхание столь естественно для нас, что люди обычно не замечают его и не задумываются о том, как оно происходит и что за ним стоит. К счастью, этот пробел в общечеловеческой любознательности активно заполняют ученые всех мастей, от медиков до химиков и физиков. Попробуем взглянуть на дыхание глазами биолога.

Для современного биолога дыхание — не только и не столько «вдох-выдох, нос сопит, стекла запотели». Для биолога дыхание — это сложный биохимический процесс получения необходимой нашему телу энергии путем реакций различных питательных веществ с кислородом. Дыхание, по сути, — это то же самое, что горение, то есть реакция окисления веществ кислородом воздуха. Только происходит оно гораздо более медленно, постепенно и под жестким контролем организма.

Наши дыхательные пути и легкие решают проблему доставки кислорода из воздуха в кровь и высвобождения из крови углекислого газа. Наш желудочно-кишечный тракт обеспечивает поступление в кровь питательных веществ из пищи. Кровь доставляет кислород и питательные вещества ко всем клеткам нашего тела. Внутри практически каждой клетки есть специальные сложные структуры — органеллы, названные митохондриями, которые отвечают за главный этап дыхания — за «сжигание» питательных веществ кислородом и получение необходимой для жизни клетки энергии. Тут и начинается самое интересное.

1.6.2. Знакомьтесь: митохондрии!

Митохондрии — это вытянутые пузырьки внутри клетки, отделенные от остального ее содержимого двумя тонкими мембранами, состоящими из липидов и гидрофобных белков — жирных, нерастворимых в воде молекул (рис. 5). Эти мембраны — самое главное в процессе дыхания. Мембраны похожи на тонкие масляные пленки; они непроницаемы для большинства

водорастворимых молекул и ионов. Мембраны играют важнейшую роль в жизни клетки, надежно отделяя клетку от окружающей среды, а клеточные органеллы — от прочего внутриклеточного содержимого (цитоплазмы).

Внешняя мембрана митохондрий — гладкая, а внутренняя многократно складчата. В качестве аналогии можно представить еще не надутый воздушный шар, который смяли и засунули внутрь маленького воздушного шарика, а затем начали надувать. Маленький шарик снаружи будет круглый и гладкий, а большой шар внутри будет сморщенный и весь в складках.

Такое странное устройство мембран необходимо митохондриям, чтобы увеличить площадь внутренней мембраны. Ведь именно в этой мембране, прочно засев в ее жирной толще, находятся белки-ферменты, осуществляющие дыхание, т.е. окисление питательных веществ кислородом.

Дыхательные ферменты работают подобно миниатюрным насосам: сжигая «топливо», они перекачивают с одной стороны мембраны на другую электроны, а в обратную сторону — ионы водорода. Электроны несут отрицательный заряд, а ионы водорода — положительный. В результате работы дыхательных ферментов внутренняя мембрана митохондрии заряжается как конденсатор: внутри митохондрии получается минус, а снаружи — плюс. Жирная мембрана является хорошим электрическим изолятором и надежно держит высокое напряжение. Без этого митохондриям не обойтись — ведь напряженность электрического поля на внутренней мембране превышает 200 киловольт на сантиметр!

Затем энергия, накопленная в виде разности потенциалов на внутренней мембране митохондрий, используется для синтеза «энергетической валюты» клетки — аденозинтрифосфата (АТФ). Это — последний этап дыхания. Наверняка вам рассказывали про АТФ на уроках биологии еще в школе. Полученные молекулы АТФ покидают митохондрии, распределяются по всей клетке и используются везде, где необходимо провести энергозатратную химическую реакцию, будь то синтез ДНК, РНК или белков, транспорт ионов или питательных веществ в клетку или из нее, движение внутриклеточных органелл и т.д. При этом АТФ расщепляется с выделением необходимой энергии, а продукты его распада отправляются в митохондрии, чтобы там, на внутренней мембране, вновь соединиться в АТФ в процессе дыхания. Масштаб этого процесса иллюстрируется цифрой: взрослый человек образует в день 40 кг АТФ, чтобы расщепить все это количество за тот же срок при совершении разных видов работы. Таким образом, АТФ работает в клетке «универсальным посредником» между всевозможными питательными веществами, которые мы потребляем (чтобы получить необходимую для жизни энергию), и разнообразными биохимическими реакциями, в которых эта энергия используется.

Все это имеет самое прямое отношение к проблеме старения. Дело в том, что некоторые из белков-ферментов, которые сидят во внутренней мембране митохондрий и осуществляют процесс дыхания, делают это не совсем «чисто». То есть в ходе окисления питательных веществ кислородом получаются весьма вредные побочные продукты — активные формы кислорода (АФК). В силу своей химической неустойчивости и высокой реакционной способности АФК быстро и агрессивно реагируют практически с любыми органическими молекулами. В первую очередь это липиды и белки, образующие мембраны.

С липидами АФК расправляются особенно жестоко. Даже один-единственный зловредный радикал ОН* (одна из АФК) может начать цепную реакцию окисления: поврежденная молекула липида сама становится радикалом, повреждает следующую молекулу и так до тех пор, пока очередной радикал не встретит мо-лекулу-антиоксиданта, способную прервать этот порочный круг. Если это не случится, дело может дойти до повреждения ДНК, что особо опасно, так как может привести к искажению «инструкций» для синтеза белков, и в результате в клетке начнут появляться дефектные белки, мешающие ее нормальной жизни.

Повреждения белков, на первый взгляд, не должны быть серьезной угрозой для клетки: в норме большая часть белков постоянно портится, утилизуется и синтезируется вновь. Однако некоторые белки, например коллаген хрящей или сухожилий, или кристаллин в хрусталике глаза, практически не заменяются, и повреждения в них накапливаются с возрастом и приводят в итоге к целому ряду неприятностей из списка признаков старения. Кроме того, если повреждаются белки дыхательной цепи митохондрий, это может повысить скорость продукции АФК такими белками. Получается порочный круг: появляясь в митохондриях, АФК в первую очередь наносят повреждения самим митохондриям, что приводит не только к снижению эффективности окисления питательных веществ, но и к еще большей продукции АФК. В итоге разбалансированные митохондрии могут необратимо отравить и убить не только саму клетку, но и ее соседей. Более того, повышенная концентрация АФК является для клетки сигналом к самоубийству: после превышения определенного уровня АФК в митохондриях запускается цепь биохимических реакций, приводящая в итоге к гибели клетки — апопотозу.

В норме деление клеток жестко контролируется целым набором генов. Однако случайные повреждения ДНК могут приводить к мутациям и поломкам в механизме контроля деления. Как уже говорилось выше, стоит только одной-единственной клетке перестать ограничивать собственное деление — и начинается безудержное размножение, вызывающее рак.

АФК являются одним из основных факторов, приводящих к случайным повреждениям ДНК. Поэтому, если в клетке повышена концентрация АФК, эта клетка имеет более высокий шанс переродиться в раковую. Для организма появление единственной раковой клетки может оказаться смертельным. В этой связи неудивительно, что как только клетка «замечает», что в ней стало многовато АФК, она самоликвидируется посредством апоптоза. Тут уж лучше перестраховаться, чем допустить промашку.

Деление клеток контролируется набором генов. Случайные повреждения ДНК могут приводить к мутациям