Революция в физике - де Бройль Луи. Страница 15

Открытие и классификация различных видов излучений и их одинаковая природа позволили ученым около сорока лет назад разделить весь физический мир на две различные категории. С одной стороны, это материя или вещество, состоящее из атомов, которые в свою очередь представляют собой совокупность протона и электронов, т е. элементарных частиц электричества. С другой стороны, излучение – совокупность волн, одинаковых по своей физической природе и отличающихся друг от друга лишь длиной. Вещество и излучение представляют собой две совершенно независимые друг от друга физические категории, поскольку вещество может существовать без всякого излучения, а излучение в свою очередь может распространяться в области пространства, абсолютно свободной от вещества. И тем не менее очень важно изучить взаимодействие вещества с излучением. Необходимо исследовать воздействие излучения на вещество и обратно, реакцию вещества на излучение, понять причины, приводящие к поглощению и испусканию излучения. Первой теорией в современной физике, которая попыталась детально разрешить эти вопросы, была электронная теория.

5. Электронная теория

Электромагнитная теория Максвелла содержит уравнения, выражающие связь между измеряемыми в нашем обычном масштабе электромагнитными полями, с одной стороны, и электрическими зарядами и токами, с другой. Эти уравнения электродинамики, выведенные на основе обобщения результатов макроскопических экспериментов, были, несомненно, справедливыми для этого круга явлений. Но для детального описания электрической природы вещества и электромагнитных процессов, происходящих внутри атомов, описания процессов излучения и поглощения необходимо было экстраполировать уравнения Максвелла в область микромира и придать им форму, пригодную для описания явлений, происходящих в атоме. Это и было сделано одним из величайших создателей современной теоретической физики Г.А. Лоренцем.

В качестве отправной точки Лоренц принял гипотезу о дискретной структуре электричества. Он исходил из существования элементарных частиц электричества, которым дал общее название электронов, и предположил, что все вещества состоят из различных комбинаций этих элементарных частиц. То, что мы обычно называем электрически заряженным телом, это тело, содержащее в целом большее число частиц, несущих заряд одного знака, чем частиц, обладающих зарядом противоположного знака. Электрически же нейтральное тело содержит одинаковое число частиц разного знака. Само собой разумеется, что в материальных телах, т е. в макроскопических, число таких заряженных частиц всегда чрезвычайно велико. Согласно этой точке зрения, электрический ток, текущий по проводнику, обусловлен перемещением большого числа электронов, содержащихся в этом проводнике, а само явление проводимости объясняется некоторой свободой движения электронов в проводящем веществе и возможностью их перемещения под действием внешнего электрического поля. Изоляторы же, напротив, характеризуются отсутствием этой свободы, в них каждый электрон имеет некое положение равновесия и может смещаться из этого положения лишь на очень малые расстояния. Каждый из электронов создает свое электромагнитное поле, и наблюдаемые и измеряемые нами обычно поля не что иное, как средние статистические суммы элементарных полей, создаваемых чрезвычайно большим числом отдельных электронов, входящих в состав всех материальных тел. Как это часто бывает, среднее суммарное поле подчиняется весьма простым законам. Эти законы, записанные в математической форме, будут просто уравнениями, которые связывают непосредственно наблюдаемые макроскопические поля с электрическими зарядами и токами. Более смелая, чем теория Максвелла, теория Лоренца пыталась описать микроскопические электромагнитные явления и с их помощью в результате усреднения получить законы, которым подчиняются крупномасштабные макроскопические явления. Лоренц пытался определить электромагнитные поля, заряды и токи в каждой точке пространства, в каждый момент времени, причем не только в пространстве между зарядами, но и внутри самих электронов. Он предположил, что все микроскопические величины, такие, как поля, заряды, токи подчиняются уравнениям того же вида, что и макроскопические уравнения Максвелла, с той лишь разницей, однако, что в них уже не остается места для различия полей и соответствующих индукций, а заряды и токи оказались зависящими от самой структуры электричества. Можно показать, что, усредняя микроскопические величины, из уравнений Лоренца можно получить систему уравнений Максвелла. При этом выясняется различие между полями и индукциями. Таким образом, электромагнитная теория Максвелла оказывается теорией «крупномасштабных» электромагнитных полей, являющихся среднестатистической суммой элементарных или мелкомасштабных полей, описываемых теорией Лоренца.

Электронная теория, основные моменты которой мы только что кратко изложили, привела к серьезным успехам и позволила предсказать и объяснить большое число новых явлений. Она раскрыла физический смысл законов дисперсии, уже полученных к тому времени с помощью других теорий. Кроме того, и это несомненно было одним из крупных ее успехов, она позволила точно предсказать нормальный эффект Зеемана, т е. расщепление спектральных линий атомов под действием магнитного поля.

Экспериментальное подтверждение этого явления изменения частоты испускаемого атомами света под действием внешнего магнитного поля явилось замечательным подтверждением электронной теории. Стало понятно, что частицы, с движением которых связано излучение, есть не что иное, как отрицательные электроны, и, таким образом, было доказано существование их внутри вещества. Это было крупным успехом теории Лоренца. В общем, можно сказать, что электронная теория удовлетворительно объяснила все явления, в которых электрические и магнитные поля так или иначе влияют на условия излучения, распространения и поглощения света. К ним относится, например, явление вращения плоскости поляризации в магнитном поле (эффект Фарадея), которое в свете теории Лоренца можно рассматривать просто как обратный эффект Зеемана, а также явления двойного лучепреломления, вызванного электрическим или магнитным полем. Во всех этих областях, составляющих электро– и магнитооптику, теория Лоренца сыграла большую роль.

Электронная теория, казалось, ответила также на важный вопрос, что является источником излучения, испускаемого веществом. Согласно уравнениям Лоренца, электрон, движущийся прямолинейно и равномерно, полностью переносит с собой свое электромагнитное поле. Следовательно, в этом случае излучения энергии в окружающее пространство не происходит. Но если электрон движется с ускорением, то он излучает электромагнитные волны, и энергия, теряемая им в результате излучения, пропорциональна квадрату ускорения.

Излучение электромагнитных волн переменным током легко объяснить с точки зрения электронной теории, если учесть, что ток представляет собой громадное число периодически колеблющихся электронов. Сразу становится ясно, почему ток может излучать энергию. Понятным становится также излучение волн Герца токами в открытых контурах, такими, например, как ток, текущий в передающей антенне радиовещательных станций. Таким образом, мы возвращаемся к теории излучения волн Герца, основанной на уравнениях Максвелла.

Рассматривая излучение отдельных ускоренно движущихся электронов, теория Лоренца позволяет узнать первопричину излучения, понять, где находится источник излучения, испускаемого веществом. Следовательно, эта теория должна была бы в принципе объяснить возникновение электромагнитных волн в масштабе атома и показать, например, каким образом атомные спектры связаны с движением внутриатомных электронов. Электронная теория столкнулась с большими трудностями при попытке объяснить возникновение атомных спектров. Но вначале казалось, что эта теория ускорительных волн позволяет дать полное и исчерпывающее объяснение процессам испускания излучения веществом. И известное явление, заключающееся в возникновении рентгеновских лучей при резком торможении электронов на антикатоде, служило неопровержимым доказательством справедливости этой теории.