200 знаменитых головоломок мира - Дьюдени Генри Эрнест. Страница 33
167. Кубическое турне коня. Несколько лет назад я где-то прочитал, что Абни Вандермонд, известный математик, который родился в 1736 г., а умер в 1793 г., большое внимание уделял турне коня. Я не уверен относительно точных результатов его исследований, но один момент привлек мое внимание: он поставил вопрос о турне коня на шести гранях куба, каждая из которых представляет собой шахматную доску. Нашел ли он решение или нет, я не знаю, но я нигде не встречал опубликованного решения, а поэтому сразу же сел за изучение этой интересной задачи. Может быть, читатель захочет ею заняться?
168. Четыре лягушки. На рисунке показано восемь грибков, на 1-м и 3-м из них сидят белые лягушки, а на 6-м и 8-й — черные. Головоломка состоит в том, чтобы, передвигая за один раз по одной лягушке в любом порядке вдоль прямых линий от одного грибка до другого, поменять лягушек местами, то есть черные лягушки должны занять грибки 1 и 3, а белые — 6 и 8. Воспользовавшись четырьмя шашками и приведенной схемой, вы найдете эту задачу совсем простой, но несколько труднее будет сделать это за 7 перемещений, где любое число последовательных ходов одной лягушки считается одним перемещением. Разумеется, на одном грибке одновременно может сидеть лишь одна лягушка.
169. Головоломка мандарина. Следующая головоломка обладает особой пикантностью, так как ее правильное решение позволило одному молодому китайцу добиться руки своей возлюбленной. Хи-Чум-Чоп был богатейшим мандарином во всей округе на сотню миль от Пекина, не счесть было числа поклонников его прекрасной дочери Пики-Бо. Самым пылким из них оказался Винки-Хи. Когда он попросил у старого мандарина руки его дочери, тот предложил ему головоломку, пообещав свое согласие, если юноша принесет ему правильный ответ в течение недели. Вин-ки-Хи, следуя обычаю, принятому среди некоторых любителей головоломок и до сего дня, предложил головоломку всем своим друзьям, а затем, сравнив решения, лучшее выдал за собственное. Мандарин выполнил свое обещание. Для свадебного пира был заколот откормленный щенок, и когда Хи-Чум-Чоп передал Винки-Хи, согласно китайскому обычаю, кусок печенки, то гости расценили это как пожелание вечного благополучия.
У мандарина был стол, разделенный на 25 квадратов, как показано на рисунке. На каждом из 24 квадратов находилась шашка с номером, это показано на рисунке. Головоломка состоит в том, чтобы расставить шашки в правильном порядке, передвигая по одной шашке за один раз способом, который мы называем ходом коня. Шашку 1 следует поставить туда, где стоит 16, 2 — туда, где 11, 4 — где 13 и т. д. Можно заметить, что все шашки на заштрихованных квадратах стоят там, где и положено. Разумеется, на один квадрат нельзя ставить одновременно две шашки. Сумеете ли вы решить головоломку за наименьшее возможное число ходов?
Дабы сделать способ передвижения шашек совершенно ясным, я отмечу, что первый ход конем можно сделать лишь шашками 1, 2 или 10. Предположим, что я пошел шашкой 1, тогда следующий ход .я должен сделать шашками 23, 4, 8 или 21. Поскольку каждый раз свободным оказывается лишь один квадрат, то порядок ходов можно указывать следующим образом: 1—21—14— 18—22 и т. д. Чтобы попрактиковаться, вам следует набросать рисунок в большем масштабе, использовав вместо шашек кусочки картона.
170. Упражнение для узников. На рисунке вы видите план северного крыла некой тюрьмы, где имеется 16 камер, соединенных между собой открытыми дверьми. Пятнадцать заключенных разместили по этим камерам, присвоив им номера. Узникам разрешается менять камеры, как они пожелают, но если когда-либо двое заключенных окажутся в одной камере, их ждет суровая кара.
И вот, дабы уменьшить растущее ожирение и сочетать физические упражнения с развлечением для ума, узники решили по предложению одного из собратьев, который интересовался турне шахматного коня, перестроиться таким образом, чтобы каждый номер располагался в одном ходе коня от предыдущего, не нарушив при этом тюремных правил и оставив в конце правую нижнюю камеру свободной, как и в начале. Самое смешное состояло в том, что в итоге они расположились следующим образом:
8
3
12
1
11
14
9
6
4
7
2
13
15
10
5
Надзиратели проглядели важное обстоятельство: узники не могли так расположиться без того, чтобы иногда двое из них не оказались в одной камере. Возьмите перенумерованные фишки, набросайте укрупненно схему, и вы обнаружите, что дело обстоит именно так. Во всем остальном данное решение вполне корректно, поскольку каждый заключенный оказывается в одном ходе от предыдущего, а угловая камера остается свободной.
Головоломка состоит в том, чтобы, начиная с указанного на рисунке расположения, добиться желаемого за наименьшее число перемещений, оставив неподвижными как можно большее число узников.
Поскольку каждый раз оказывается свободной лишь одна камера, нужно просто выписать подряд номера тех заключенных, которые в нее переходят. Ясно, что лишь малое число узников не будет участвовать в передвижениях, но я предоставляю читателю самостоятельно определить, чему оно равно, так как это очень важный момент в данной головоломке.
171. Головоломка с конурами. У одного человека было 25 собачьих конур, связанных между собой проходами, как показано на рисунке. Он хотел разместить в них 20 собак, чтобы они образовали непрерывный путь коня от 1-го до 20-го номера, причем 5 нижних конур должны были, как и ранее, остаться пустыми. Это следовало сделать путем перемещения в свободную конуру за один раз одной собаки. Собаки были хорошо вышколены, так что можно было не сомневаться, что каждая останется в той конуре, куда ее посадят, но следует помнить, что, если в одну конуру попадут две собаки, между ними возникнет смертельная схватка. Как можно решить головоломку за наименьшее число перемещений, избежав того, чтобы две собаки в какой-то момент оказались в одной конуре?
172. Две пешки. Вот небольшая приятная головоломка на комбинаторику. Сколькими различными способами две данные пешки (см. рисунок) можно продвинуть на восьмую клетку? Вы можете передвигать их в любом порядке, образуя при этом различные последовательности ходов. Так, вы можете пойти первой пешкой на а3 или а4, а потом второй на h3 либо передвигать первую пешку сколько хотите, не касаясь второй. Любая последовательность ходов допустима, но только в данной головоломке пешка, достигнув восьмой клетки, погибает, а не превращается в другую шахматную фигуру, как в обычной игре. Можете ли вы подсчитать число различных последовательностей? На первый взгляд это выглядит весьма трудным, но я покажу, что при правильном подходе все гораздо проще.
Смешанные задачи
173. Расстановка шахматных фигур. У меня есть единственная шахматная доска и единственный набор шахматных фигур. Сколькими различными способами можно правильно расставить фигуры перед началом игры?[25] Я обнаружил, что в большинстве своем при подсчете все делают ошибку в одном и том же месте.
174. Подсчет прямоугольников. Можете ли вы сказать, сколько квадратов и других прямоугольников содержит шахматная доска? Другими словами, сколькими способами можно обозначить квадрат или другой прямоугольник с помощью линий, отделяющих клетки друг от друга?