200 знаменитых головоломок мира - Дьюдени Генри Эрнест. Страница 45

Пока велась беседа, официант принес Бейнсу телеграмму.

— Ну вот, — сказал Бейнс, прочитав послание, — телеграмма от Доуви: «Не беспокойтесь фото тчк леди оказалась сестрой джентльмена зпт находившейся Париже проездом». Это подтверждает наш вывод. Вы могли бы заметить, что леди легко одета, и, следовательно, плащ вполне мог принадлежать ей. Вполне очевидно, что дождь был внезапным и спутники были недалеко от цели, так что она не сочла нужным надевать плащ.

63. Объяснение тайны Корнуоллского утеса оказалось очень простым. И все же это был ловкий трюк, придуманный двумя преступниками, который увенчался бы полным успехом, не появись неожиданно наши друзья из Клуба головоломок. Вот как это происходило. Когда Лэмсон и Марш достигли подъема, Марш один взошел на вершину утеса с большими башмаками Лэмсона в руках. Добравшись до края утеса, он поменял ботинки и задом наперед спустился по склону, неся на этот раз в руках свои собственные ботинки. Поэтому меньшие следы имеют более глубокий отпечаток на пятке, а большие следы — на носке; человек сильнее наступает на пятку, когда идет прямо, и делает упор на носки, когда движется задом наперед. Это также согласуется с тем обстоятельством, что большие следы иногда наступали на меньшие, но никогда наоборот, а также с тем, что большие следы совершали более короткие шаги, поскольку человек, двигаясь задом наперед, всегда делает шаг короче. Записная книжка была подброшена нарочно, чтобы полиция обратила внимание на следы и пошла по ложному пути.

64. Рассел обнаружил, что имеется ровно 12 пятизначных чисел, обладающих тем свойством, что произведение первых двух его цифр на три оставшиеся (все цифры различны и среди них нет нуля) дает число, состоящее из тех же самых пяти цифр, идущих в другом порядке. Но только одно из этих 12 чисел начиналось с 1, а именно 14 926. Далее, если мы умножим 14 на 926, то получим 12 964, число, состоящее из тех же цифр. Следовательно, номер автомобиля был 14 926.

Остальные одиннадцать чисел — это 34 651, 42 678, 51 246, 57 834, 75 231, 78 624, 87 435, 72 936, 65 281, 65 983 и 86 251. (См. также задачи 93 и 101.)

65. На рисунке видно, что существуют два различных способа, с помощью которых можно начертить пути людей в Вороньем парке. Это зависит от того, пошел ли дворецкий Е на север или на юг от домика егеря и обошел ли егерь А дом ЕЕ с севера или с юга. Но можно заметить, что единственными людьми, приближавшимися к мистеру Хастингсу, не пересекая пути, были дворецкий Е и человек, вошедший через ворота С. Однако известно, что дворецкий отправился спать за пять минут до полуночи, тогда как мистер Хастингс оставался до полуночи у приятеля. Следовательно, преступником должен быть человек, вошедший в парк через ворота С.

200 знаменитых головоломок мира - _234.jpg

66. Площадь поля имеет от 17 до 18 квадратных фарлонгов, точнее, 17,937254 квадратного фарлонга, или 179,37254 акра. Если бы расстояния от последовательных углов равнялись соответственно 3, 2 и 4 фарлонгам, то площадь поля составляла бы 209,70537 акра.

Один из способов решения данной задачи состоит в следующем. Выразим площадь треугольника АРВ через сторону квадрата х. Удвоенный результат составит ху. Поделив его на х и возведя в квадрат, мы выразим у2 через х. Аналогично выразим z2 через х; затем решим уравнение у2 + z2 = 32, которое примет вид х4 — 20x2 = —37. Следовательно, х2 = 10 +

200 знаменитых головоломок мира - _235.jpg
= 17,937254 квадратного фарлонга (очень точное приближение), а поскольку в одном квадратном фарлонге содержится десять акров, то это равно 179,37254 акра. Если мы возьмем отрицательный корень уравнения, то получим площадь поля в 20,62746 акра; в этом случае сокровища были бы зарыты вне поля, как показано на рис. 2. Но это решение исключено условием, гласящим, что сокровища зарыты на поле. Точные слова были: «В документе... говорится, что поле квадратное и что сокровища зарыты на нем...»

200 знаменитых головоломок мира - _236.jpg

ГОЛОВОЛОМКИ ПРОФЕССОРА

67. Ключом к решению головоломки служит тот факт, что если составлять магический квадрат из целых чисел, сумма которых равна 15, то 2 обязательно приходится помещать в одном из его углов. В противном случае числа должны быть дробными, а это и обеспечено в нашей головоломке использованием шестипенсовых монет и полукрон. Я привожу нужное расположение, в нем используются наименьшие ходящие в Англии монеты, сумма которых составляет 15. Можно заметить, что в каждом углу находится дробная сумма, тогда как требуемая сумма вдоль каждого из восьми направлений равна целому числу шиллингов.

200 знаменитых головоломок мира - _237.jpg

68. Первая из этих головоломок основана на аналогичном принципе, хотя на самом деле она много проще, ибо условие, что девять марок должны быть различными, делает простым их выбор, хотя для того, чтобы их правильно разместить, требуется немного подумать и поэкспериментировать, прежде чем будет обнаружена закономерность, управляющая дробями в углах. На рисунке вы видите решение.

200 знаменитых головоломок мира - _238.jpg

Я привожу и решение второй головоломки с марками. Сумма вдоль каждой вертикали, горизонтали и диагонали равна 1 шиллингу 6 пенсам. В одном квадратике нет марок, и условием это не запрещено. В обращении находятся марки следующего достоинства: — ½d., 1d., 1½ d., 2d., 2½ d., 3d., 4d., 5d., 6d., 9d., 10d., 1s., 2s., 6d., 5s., 10s., £ 1 и £2.

В первом случае числа образуют арифметическую прогрессию: 1, 1½, 2½ , 3, 3½, 4, 4½, 5.

200 знаменитых головоломок мира - _239.jpg

Но из любых девяти чисел можно образовать магический квадрат, если их удается расположить следующим образом:

200 знаменитых головоломок мира - _240.jpg

где разности по горизонталям все одинаковы так же, как и разности по вертикалям, хотя последние и не обязаны совпадать с первыми. Именно так обстоит дело в случае второго решения, где числа можно записать в виде:

200 знаменитых головоломок мира - _241.jpg

Точно так же в решении задачи 67 с монетами числа в шиллингах равны

200 знаменитых головоломок мира - _242.jpg

Если должно быть девять различных чисел, то 0 может появиться один раз (как в решении задачи 22). И все же можно построить квадрат с отрицательными числами следующим образом:

200 знаменитых головоломок мира - _243.jpg

69. Как совершенно верно заметил Профессор, существует только одно решение (если не считать симметричного) этой головоломки. На другие бокалы прыгают следующие лягушки: Джордж в третьем (сверху) горизонтальном ряду; Чанг — искусно выполненное существо в конце четвертого ряда и Вильгельмина — прекрасное создание в седьмом ряду. Джордж прыгает вниз на второй бокал седьмого ряда; Чанг, который из-за хронического ревматизма может совершать лишь небольшие прыжки, перемещается довольно неохотно на бокал, расположенный непосредственно над ним (восьмой в третьем ряду), тогда как Вильгельмина со всем пылом юности и пола совершает отличный и сложный прыжок на четвертый бокал четвертого ряда. При новом расположении, как видно из рисунка, никакие две лягушки не находятся на одной вертикали, горизонтали или диагонали.

200 знаменитых головоломок мира - _244.jpg

70. Эта головоломка довольно трудна, хотя, как заметил Профессор, когда Хокхерст нашел решение, «она как раз из тех, которые решаются... с первого взгляда», если повезет. И все же если посмотреть на изящное симметричное решение, то оно выглядит невероятно простым.