Пятьсот двадцать головоломок - Дьюдени Генри Эрнест. Страница 34
Какой из игроков должен победить в этой игре?
459. Перевертывание кости.Для этой игры нужна одна игральная кость. Первый игрок называет любое число от 1 до 6, а второй бросает кость. Затем они по очереди перевертывают кость в любую сторону, но не больше, чем на четверть полного оборота за один раз. К числу очков, названному первым игроком, прибавляется число очков, выпавших на верхней грани после бросания кости и каждого ее поворота. Выигрывает тот из игроков, которому удается при очередном повороте достичь суммы 25 очков или вынудить противника при следующем повороте превзойти 25 очков.
Приведу примерную партию. Игрок Аназывает 6, а игрок В, подбросив кость, получает 3 очка (как на рисунке), после чего сумма очков становится равной 9. Затем Aповертывает кость вверх гранью с 1 очком, сумма становится равной 10 очкам, игрок Вповертывает кость вверх гранью с 3 очками (сумма равна 13 очкам). Игрок Аповертывает кость вверх гранью с 6 очками (сумма очков 19). Игрок Вповертывает кость с 3 очками (сумма очков 22). Игрок Аповертывает кость вверх гранью с 1 очком (сумма очков 23). Наконец, игрок В переворачивает кость вверх гранью с 2 очками, достигает суммы 25 очков и выигрывает.
Какое число должен назвать А, чтобы выиграть с наибольшими шансами? Помните, что числа на противоположных гранях кости всегда дают в сумме 7, то есть расположены парами 1—6, 2—5, 3—4.
460. Три кости.Мэйсон и Джексон играли в кости. У них было три кости, и выигрывал тот игрок, у которого сумма выпавших очков равнялась одному из двух чисел, названных им перед началом игры. Мэйсон назвал 7 и 13, и один из его удачных бросков показан на рисунке.
Каковы шансы Мэйсона на выигрыш при очередном бросании? Какие два числа должен назвать Джексон, чтобы шансы игроков на успех сравнялись?
461. Игра в 37.Вот красивая игра-головоломка, которая проста и в то же время чрезвычайно увлекательна. Большинству из вас может показаться, что у обоих игроков равные шансы на выигрыш и кто победит — дело случая. Однако в этой игре есть одна тонкость, зная которую, можно выигрывать с уверенностью.
Положите на стол пять костяшек домино, у которых число очков равно соответственно 1, 2, 3, 4, 5 (см. рисунок). Двое игроков играют по очереди. Первый игрок кладет монету на произвольную костяшку, например на 5, что дает ему 5 очков; затем второй игрок перекладывает монету, скажем, на 3 и, прибавив 3 к 5, получает при этом 8 очков; затем первый игрок кладет монету на 1 и получает сумму очков, равную 9, и т. д. Тот игрок, который наберет 37 или принудит своего противника превзойти эту сумму, выигрывает. Помните, что при каждом ходе вы обязаны класть монету на другую костяшку.
462. Игра в 22.Разложите 16 карт, как показано на рисунке. Двое игроков по очереди переворачивают по одной карте, прибавляя ее значение к общей сумме очков. Выигрывает тот, кому удастся набрать 22 или вынудить соперника превзойти эту сумму. Например, игрок Апереворачивает четверку, игрок Впереворачивает тройку (набрав 7 очков), игрок Апереворачивает четверку (набрав 11 очков), игрок В переворачивает двойку (счет становится равным 13 очкам). Затем игрок Апереворачивает туза (14 очков), игрок В — тройку (17 очков). При любом ходе игрока Аигрок Вна следующем ходу набирает 22 очка и выигрывает.
Другой вариант. Предположим, что партия развивалась следующим образом: 3—1, 1—2, 3—3, 1—2, 1—4, счет стал 21, и второй игрок снова должен выиграть, поскольку не осталось ни одной карты с 1 очком и первый игрок на следующем ходу вынужден превзойти сумму 22 очка.
Кто из игроков может всегда выиграть и как он должен при этом действовать?
463. Игра в девять квадратов.Начертите простую диаграмму, изображенную на рисунке, и возьмите коробок спичек. Длина стороны большого квадрата равна трем спичкам. Игра состоит в том, чтобы, выкладывая поочередно по одной спичке, окружить большее число малых квадратиков, чем окружит ваш противник. Замкнув маленький квадратик, вы не только получаете одно очко, но и ходите снова вне очереди [26]. Здесь изображена одна из партий. Я и мой противник выложили по шесть спичек, а поскольку начинал я, то теперь моя очередь ходить.
Какой ход будет для меня наилучшим? Если я пойду на FG, то мой противник пойдет на BFи выиграет очко. Далее, поскольку он получает право внеочередного хода, то он пойдет на EF, а затем на IJи на GK. Если теперь он пойдет на CD, то мне не останется ничего лучшего, как пойти на DH(получив при этом одно очко); но, поскольку я должен буду снова ходить вне очереди, все остальные квадратики достанутся моему противнику. В результате я проиграю с «разгромным» счетом 8 : 1.
Как я должен пойти вместо «рокового» хода на FG? Во многих партиях игры в 9 квадратов есть над чем подумать. Ни одна из партий не может закончиться вничью.
464. Десять карт.Разложите десять игральных карт, как показано на рисунке. Играют двое. Первый игрок может перевернуть любую карту. Затем второй игрок может перевернуть две соседние карты или одну карту и т. д. Выигрывает тот из игроков, который перевернет последнюю карту.
Помните, что вначале первый игрок должен перевернуть одну карту, а затем каждый из игроков перевертывает либо одну, либо две соседние карты.
Головоломки с домино
465. Дроби из домино.Возьмите обычный набор домино и удалите из него все дубли и пустышки. Затем рассматривайте оставшиеся 15 костяшек как дроби. На рисунке костяшки расположены таким образом, что сумма всех дробей в каждом ряду равна 2½. Однако все мои дроби правильные. Вам же разрешается использовать столько неправильных дробей (вроде
, , , сколько вы пожелаете, лишь бы сумма в каждом ряду равнялась 10.466. Головоломка с домино.Вы видите, что изображенные здесь две костяшки домино расположены таким образом, что, объединяя между собой группы очков, непосредственно прилегающие друг к другу, я могу получить все числа от 1 до 9 включительно. Так, 1, 2 и 3 можно взять «в готовом виде», 1 и 3 в сумме дают 4; 3 и 2 дают 5; 3 и 3 дают 6; 1, 3 и 3 дают 7; 3, 3 и 2 дают 8; а 1, 3, 3 и 2 дают 9. Не разрешается составлять 3 из 1 и 2 или 5 из первой 3 и 2, поскольку эти числа не прилегают друг к другу непосредственно.
Попытайтесь теперь расположить 4 костяшки домино так, чтобы аналогичным образом получить любое число от 1 до 23 включительно. Костяшки не обязаны располагаться 1 к 1, 2 к 2 и т. д., как во время игры.
467. Квадрат из домино.Выберите любые 18 костяшек домино из обычного комплекта и расположите их в виде квадрата, как вам заблагорассудится, лишь бы никакое число не повторялось дважды ни в одной из строк, ни в одном из столбцов. Пример, приведенный на рисунке, неудачен, так как, хотя ни одно число не повторяется дважды ни в одном из столбцов, три строки нарушают это условие. В первой строке расположены две четверки и две пустышки, в третьей строке — две пятерки и две шестерки, а в четвертой строке — две тройки.